AI Helps Unravel Mystery of Neurological Disorders

Neurological disorders are estimated to affect up to 1 billion people around the world—including nearly 100 million Americans—with roughly 7 million people dying of the maladies every year worldwide. The vast spectrum of more than 600 neurological disorders includes Alzheimer’s, Parkinson’s disease, strokes, multiple sclerosis, epilepsy, migraines and brain injuries.

Spotlight

Kindred Healthcare

Kindred is a leading diversified post-acute healthcare provider of transitional care hospitals, rehabilitation services. Kindred Healthcare’s mission is to promote healing, provide hope, preserve dignity and produce value for each patient, resident, family member, customer, employee and shareholder we serve.

OTHER ARTICLES
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 13, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
Research

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | July 11, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More
Medical

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 14, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
Research

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More

Spotlight

Kindred Healthcare

Kindred is a leading diversified post-acute healthcare provider of transitional care hospitals, rehabilitation services. Kindred Healthcare’s mission is to promote healing, provide hope, preserve dignity and produce value for each patient, resident, family member, customer, employee and shareholder we serve.

Related News

Using Machine Learning To Reveal How the Brain Encodes Memories

Technology Networks | November 28, 2019

Researchers working in The N.1 Institute for Health at NUS, led by Assistant Professor Camilo Libedinsky from NUS Psychology, and Senior Lecturer Shih-Cheng Yen from the Innovation and Design Programme at NUS Engineering, have discovered that a population of neurons in the brain’s frontal lobe contain stable short-term memory information within dynamically-changing neural activity. This discovery may have far-reaching consequences in understanding how organisms have the ability to perform multiple mental operations simultaneously, such as remembering, paying attention and making a decision, using a brain of limited size. In the human brain, the frontal lobe plays an important role in processing short-term memories. Short-term memory has a low capacity to retain information. “It can usually only hold six to eight items. Think for example about our ability to remember a phone number for a few seconds – that uses short-term memory,” Libendisky explained.

Read More

Electronic Chip Allows Synaptic Connectivity to Be Mapped at High Level

GEN | September 24, 2019

Scientists from Harvard University say they have developed an electronic chip that can perform high-sensitivity intracellular recording from thousands of connected neurons simultaneously. This advance allowed them to map synaptic connectivity at an unprecedented level, identifying hundreds of synaptic connections. “Current electrophysiological or optical techniques cannot reliably perform simultaneous intracellular recordings from more than a few tens of neurons. Here we report a nanoelectrode array that can simultaneously obtain intracellular recordings from thousands of connected mammalian neurons in vitro. The array consists of 4,096 platinum-black electrodes with nanoscale roughness fabricated on top of a silicon chip that monolithically integrates 4,096 microscale amplifiers, configurable into pseudocurrent-clamp mode (for concurrent current injection and voltage recording) or into pseudovoltage-clamp mode (for concurrent voltage application and current recording),” the investigators wrote. “We used the array in pseudovoltage-clamp mode to measure the effects of drugs on ion-channel currents. In pseudocurrent-clamp mode, the array intracellularly recorded action potentials and postsynaptic potentials from thousands of neurons. In addition, we mapped over 300 excitatory and inhibitory synaptic connections from more than 1,700 neurons that were intracellularly recorded for 19 minutes. This high-throughput intracellular-recording technology could benefit functional connectome mapping, electrophysiological screening, and other functional interrogations of neuronal networks.” “Our combination of the sensitivity and parallelism can benefit fundamental and applied neurobiology alike, including functional connectome construction and high-throughput electrophysiological screening,” said Hongkun Park, PhD, the Mark Hyman Jr. professor of chemistry and professor of physics, and co-senior author of the paper.

Read More

Cancer Cells Form Synaptic Connections with Neurons

GEN | September 23, 2019

In aggressive glioblastoma, cancer cells plug into the brain’s neuronal network and receive impulses that appear to stimulate tumor growth. These impulses, which are transmitted via synaptic connections, may explain how brain tumors spread so quickly. They may also be subject to jamming—that is, to interference by drugs. If so, it may be possible to pull the plug on brain cancer. The shocking discovery that cancer tissue, like brain tissue, may be electrically active was reported by scientists from Heidelberg University Hospital and the German Cancer Research Center. In a paper (“Glutamatergic synaptic input to glioma cells drives brain tumor progression”) that appeared in Nature, these scientists noted that previous research had already established that glioblastoma cells connect with one another rather like neurons. This finding has been extended in the new research, which argues that tumor cells not only interconnect like neurons, they also interconnect with neurons. Even more intriguingly, the interconnections are active. “We report a direct communication channel between neurons and glioma cells in different disease models and human tumors: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells,” the authors of the Nature article wrote. “These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumor microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype.”

Read More

Using Machine Learning To Reveal How the Brain Encodes Memories

Technology Networks | November 28, 2019

Researchers working in The N.1 Institute for Health at NUS, led by Assistant Professor Camilo Libedinsky from NUS Psychology, and Senior Lecturer Shih-Cheng Yen from the Innovation and Design Programme at NUS Engineering, have discovered that a population of neurons in the brain’s frontal lobe contain stable short-term memory information within dynamically-changing neural activity. This discovery may have far-reaching consequences in understanding how organisms have the ability to perform multiple mental operations simultaneously, such as remembering, paying attention and making a decision, using a brain of limited size. In the human brain, the frontal lobe plays an important role in processing short-term memories. Short-term memory has a low capacity to retain information. “It can usually only hold six to eight items. Think for example about our ability to remember a phone number for a few seconds – that uses short-term memory,” Libendisky explained.

Read More

Electronic Chip Allows Synaptic Connectivity to Be Mapped at High Level

GEN | September 24, 2019

Scientists from Harvard University say they have developed an electronic chip that can perform high-sensitivity intracellular recording from thousands of connected neurons simultaneously. This advance allowed them to map synaptic connectivity at an unprecedented level, identifying hundreds of synaptic connections. “Current electrophysiological or optical techniques cannot reliably perform simultaneous intracellular recordings from more than a few tens of neurons. Here we report a nanoelectrode array that can simultaneously obtain intracellular recordings from thousands of connected mammalian neurons in vitro. The array consists of 4,096 platinum-black electrodes with nanoscale roughness fabricated on top of a silicon chip that monolithically integrates 4,096 microscale amplifiers, configurable into pseudocurrent-clamp mode (for concurrent current injection and voltage recording) or into pseudovoltage-clamp mode (for concurrent voltage application and current recording),” the investigators wrote. “We used the array in pseudovoltage-clamp mode to measure the effects of drugs on ion-channel currents. In pseudocurrent-clamp mode, the array intracellularly recorded action potentials and postsynaptic potentials from thousands of neurons. In addition, we mapped over 300 excitatory and inhibitory synaptic connections from more than 1,700 neurons that were intracellularly recorded for 19 minutes. This high-throughput intracellular-recording technology could benefit functional connectome mapping, electrophysiological screening, and other functional interrogations of neuronal networks.” “Our combination of the sensitivity and parallelism can benefit fundamental and applied neurobiology alike, including functional connectome construction and high-throughput electrophysiological screening,” said Hongkun Park, PhD, the Mark Hyman Jr. professor of chemistry and professor of physics, and co-senior author of the paper.

Read More

Cancer Cells Form Synaptic Connections with Neurons

GEN | September 23, 2019

In aggressive glioblastoma, cancer cells plug into the brain’s neuronal network and receive impulses that appear to stimulate tumor growth. These impulses, which are transmitted via synaptic connections, may explain how brain tumors spread so quickly. They may also be subject to jamming—that is, to interference by drugs. If so, it may be possible to pull the plug on brain cancer. The shocking discovery that cancer tissue, like brain tissue, may be electrically active was reported by scientists from Heidelberg University Hospital and the German Cancer Research Center. In a paper (“Glutamatergic synaptic input to glioma cells drives brain tumor progression”) that appeared in Nature, these scientists noted that previous research had already established that glioblastoma cells connect with one another rather like neurons. This finding has been extended in the new research, which argues that tumor cells not only interconnect like neurons, they also interconnect with neurons. Even more intriguingly, the interconnections are active. “We report a direct communication channel between neurons and glioma cells in different disease models and human tumors: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells,” the authors of the Nature article wrote. “These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumor microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype.”

Read More

Events