AI for plant breeding in an ever-changing climate

November 14, 2019 | 26 views

How might artificial intelligence (AI) impact agriculture, the food industry, and the field of bioengineering? Dan Jacobson, a research and development staff member in the Biosciences Division at the US Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL), has a few ideas. For the past 5 years, Jacobson and his team have studied plants to understand the genetic variables and patterns that make them adaptable to changing environments and climates. As a computational biologist, Jacobson uses some of the world's most powerful supercomputers for his work--including the recently decommissioned Cray XK7 Titan and the world's most powerful and smartest supercomputer for open science, the IBM AC922 Summit supercomputer, both located at the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility at ORNL.

Spotlight

Tenet Healthcare

Tenet Healthcare Corporation is a diversified healthcare services company with 115,000 employees united around a common mission: to help people live happier, healthier lives. Through its subsidiaries, partnerships and joint ventures, including United Surgical Partners International, the Company operates general acute care and specialty hospitals, ambulatory surgery centers, urgent care centers and other outpatient facilities. Tenet’s Conifer Health Solutions subsidiary provides technology-enabled performance improvement and health management solutions to hospitals, health systems, integrated delivery networks, physician groups, self-insured organizations and health plans.

OTHER ARTICLES
RESEARCH

Expansion of BioPharma: Opportunities and Investments

Article | July 11, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDTECH

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | September 22, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MEDTECH

Biotech in 2022

Article | July 20, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MEDTECH

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

Tenet Healthcare

Tenet Healthcare Corporation is a diversified healthcare services company with 115,000 employees united around a common mission: to help people live happier, healthier lives. Through its subsidiaries, partnerships and joint ventures, including United Surgical Partners International, the Company operates general acute care and specialty hospitals, ambulatory surgery centers, urgent care centers and other outpatient facilities. Tenet’s Conifer Health Solutions subsidiary provides technology-enabled performance improvement and health management solutions to hospitals, health systems, integrated delivery networks, physician groups, self-insured organizations and health plans.

Related News

Avantium Builds 10-Ton Demonstration Plant to Produce Bioplastics

Labiotech.eu | November 07, 2019

The Dutch bioplastics company Avantium has opened a demonstration plant capable of producing 10 tons per year of mono-ethylene glycol (MEG), a compound used to make plastics, using plants as the starting material. Construction of Avantium’s plant began at Chemie Park Delfzijl, the Netherlands, last year. The plant will extract carbohydrates from agricultural waste and crops such as sugar beet, and then use a chemical process called hydrogenolysis to turn them into MEG, an essential ingredient in textiles and plastic bottles. This plant will model the manufacturing process and allow early troubleshooting. Avantium aims to have a fully commercial plant up and running by 2024. At present, 99% of MEG comes from the petrochemical industry, which generates high greenhouse gas emissions. Avantium aims to reduce society’s reliance on non-renewable fossil fuels by instead producing the material from crops and unwanted plant waste. The company estimates that its technology could reduce carbon emissions by 70% compared with traditional sources of MEG.

Read More

The Pectin Is Protectin’

Technology Networks | October 25, 2019

Aluminum toxicity has long been known to damage plant cells and inhibit the growth of plants. Aluminum is widely found in soils that are too acidic, and as human activities have increased soil acidity across the globe, aluminum toxicity has become a leading cause of low crop yield worldwide. While the effect of aluminum on plants is widely known, precisely how aluminum enters plant cells and causes harm is not well understood. In a new study published in Frontiers in Plant Science, researchers at the University of Tsukuba have found that an integral part of a plant’s cell wall may play a role in protecting rice plants from soil aluminum. The study focused on Oryza sativa, a species of rice widely grown in Asiatic countries. The group took advantage of a mutant strain of the rice called star1 (Sensitive To Aluminum Rhizotoxicity 1). As its name suggests, the mutant is highly sensitive to the toxic effects of aluminum, and its root tips grow very poorly when aluminum is in the soil. The mutant strain allowed the researchers to piece apart how rice plant cells respond, at the molecular level, to aluminum. “Earlier work suggested that the cell wall somehow plays a mechanistic role in aluminum susceptibility, including a possible role by pectin,” says Hiroaki Iwai, lead author of the study. “We focused on pectin because it is a major polysaccharide component of the cell wall, and because prior evidence suggests that the sensitivity of star1 to aluminum might be related to a pectin deficiency.”

Read More

New dairy cattle breeding method increases genetic selection efficiency

phys.org | July 05, 2019

Brazilian scientists at Sao Paulo State University (UNESP) collaborating with colleagues at the University of Maryland and the United States Department of Agriculture (USDA) have developed a dairy cattle breeding method that adds a new parameter to genetic selection and conserves or even improves a population's genetic diversity. The study, which is published in Journal of Dairy Science, was funded by the São Paulo Research Foundation—FAPESP and USDA. Besides genetic value associated with milk, fat and protein yields, the new method also takes into consideration the variance in gametic diversity and what the authors call "relative predicted transmitting ability," defined as an individual animal's capacity to transmit its genetic traits to the next generation based on this variance."Not all progeny of highly productive animals inherit this quality. The new method selects animals that will produce extremely productive offspring," said Daniel Jordan de Abreu Santos, who conducted the study while he was a postdoctoral fellow at UNESP's School of Agricultural and Veterinary Sciences (FCAV) in Jaboticabal, São Paulo State.

Read More

Avantium Builds 10-Ton Demonstration Plant to Produce Bioplastics

Labiotech.eu | November 07, 2019

The Dutch bioplastics company Avantium has opened a demonstration plant capable of producing 10 tons per year of mono-ethylene glycol (MEG), a compound used to make plastics, using plants as the starting material. Construction of Avantium’s plant began at Chemie Park Delfzijl, the Netherlands, last year. The plant will extract carbohydrates from agricultural waste and crops such as sugar beet, and then use a chemical process called hydrogenolysis to turn them into MEG, an essential ingredient in textiles and plastic bottles. This plant will model the manufacturing process and allow early troubleshooting. Avantium aims to have a fully commercial plant up and running by 2024. At present, 99% of MEG comes from the petrochemical industry, which generates high greenhouse gas emissions. Avantium aims to reduce society’s reliance on non-renewable fossil fuels by instead producing the material from crops and unwanted plant waste. The company estimates that its technology could reduce carbon emissions by 70% compared with traditional sources of MEG.

Read More

The Pectin Is Protectin’

Technology Networks | October 25, 2019

Aluminum toxicity has long been known to damage plant cells and inhibit the growth of plants. Aluminum is widely found in soils that are too acidic, and as human activities have increased soil acidity across the globe, aluminum toxicity has become a leading cause of low crop yield worldwide. While the effect of aluminum on plants is widely known, precisely how aluminum enters plant cells and causes harm is not well understood. In a new study published in Frontiers in Plant Science, researchers at the University of Tsukuba have found that an integral part of a plant’s cell wall may play a role in protecting rice plants from soil aluminum. The study focused on Oryza sativa, a species of rice widely grown in Asiatic countries. The group took advantage of a mutant strain of the rice called star1 (Sensitive To Aluminum Rhizotoxicity 1). As its name suggests, the mutant is highly sensitive to the toxic effects of aluminum, and its root tips grow very poorly when aluminum is in the soil. The mutant strain allowed the researchers to piece apart how rice plant cells respond, at the molecular level, to aluminum. “Earlier work suggested that the cell wall somehow plays a mechanistic role in aluminum susceptibility, including a possible role by pectin,” says Hiroaki Iwai, lead author of the study. “We focused on pectin because it is a major polysaccharide component of the cell wall, and because prior evidence suggests that the sensitivity of star1 to aluminum might be related to a pectin deficiency.”

Read More

New dairy cattle breeding method increases genetic selection efficiency

phys.org | July 05, 2019

Brazilian scientists at Sao Paulo State University (UNESP) collaborating with colleagues at the University of Maryland and the United States Department of Agriculture (USDA) have developed a dairy cattle breeding method that adds a new parameter to genetic selection and conserves or even improves a population's genetic diversity. The study, which is published in Journal of Dairy Science, was funded by the São Paulo Research Foundation—FAPESP and USDA. Besides genetic value associated with milk, fat and protein yields, the new method also takes into consideration the variance in gametic diversity and what the authors call "relative predicted transmitting ability," defined as an individual animal's capacity to transmit its genetic traits to the next generation based on this variance."Not all progeny of highly productive animals inherit this quality. The new method selects animals that will produce extremely productive offspring," said Daniel Jordan de Abreu Santos, who conducted the study while he was a postdoctoral fellow at UNESP's School of Agricultural and Veterinary Sciences (FCAV) in Jaboticabal, São Paulo State.

Read More

Events