Agrigenomics Yields a Next-Gen Cornucopia

Gene editing technology takes agricultural biotechnology beyond transgenic technology, which transfers “as is” genes from one species to another. Essentially, gene editing is more refined than transgenesis. This difference may justify the view that gene edited plants are not, like transgenic plants, genetically modified organisms (GMOs). Regulatory requirements and consumer attitudes may hang in the balance.

Spotlight

Tetraphase Pharmaceuticals

Tetraphase Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company developing novel antibiotics to treat the serious and life-threatening multidrug-resistant infections that pose a major and growing global health threat

OTHER ARTICLES
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 20, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
MedTech

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | July 16, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 12, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
Medical

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Spotlight

Tetraphase Pharmaceuticals

Tetraphase Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company developing novel antibiotics to treat the serious and life-threatening multidrug-resistant infections that pose a major and growing global health threat

Related News

MedTech

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

MedTech

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

Events