A Step Closer to a Bioengineered Liver Fit for Transplantation

Currently over 6,300 people in the UK are waiting for an organ transplant, and sadly everyday around three people die waiting. In efforts to reduce the reliance on organ donors and improve the outlook for patients, alternative sources of organs are being explored by several research groups. In a study recently published in Nature Biomedical Engineering, bioengineered livers created by decellularization and recellularization were implanted into pigs, where they were able to sustain continuous perfusion for up to 15 days. We spoke to Miromatrix’s CEO, Dr Jeff Ross, to learn more about the study and how it advances the state of bioengineering organs.

Spotlight

Indigo

Indigo offers a generalist care offer in response to the increasing demand for care and the changing playing field. Generalist care is offered by Indigo in or near the GP practice, is accessible, does not unnecessarily medicalise and is immediately accessible without waiting times. This care meets the needs of a large group of clients, who are now receiving specialist mental health care in the second line.

OTHER ARTICLES
Research

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
Medical

Better Purification and Recovery in Bioprocessing

Article | August 16, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 13, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Spotlight

Indigo

Indigo offers a generalist care offer in response to the increasing demand for care and the changing playing field. Generalist care is offered by Indigo in or near the GP practice, is accessible, does not unnecessarily medicalise and is immediately accessible without waiting times. This care meets the needs of a large group of clients, who are now receiving specialist mental health care in the second line.

Related News

New machine learning approach could accelerate bioengineering

Phys.org | May 30, 2018

Scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to use machine learning to dramatically accelerate the design of microbes that produce biofuel.Their computer algorithm starts with abundant data about the proteins and metabolites in a biofuel-producing microbial pathway, but no information about how the pathway actually works. It then uses data from previous experiments to learn how the pathway will behave. The scientists used the technique to automatically predict the amount of biofuel produced by pathways that have been added to E. coli bacterial cells.

Read More

Bioengineering team's 'circuit' work may benefit gene therapy

phys.org | March 06, 2018

Tyler Quarton, a bioengineering graduate student, and Dr. Leonidas Bleris, associate professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science, said they hope their work, published in Systems Biology and Applications, has a big impact on synthetic biology and gene therapy. Every living cell contains a compilation of genes, which serves as the blueprint for all the biological activity within a cell. Bleris explained this system by comparing genes to musicians. Their collective expression creates a genetic symphony that can invoke a multitude of cellular emotions, calming or exciting the cell when appropriate. Stretching this analogy, the conductor of this symphony, equipped with a waving baton, can quiet an individual or whole section if they begin to play too loudly.

Read More

New machine learning approach could accelerate bioengineering

Phys.org | May 30, 2018

Scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to use machine learning to dramatically accelerate the design of microbes that produce biofuel.Their computer algorithm starts with abundant data about the proteins and metabolites in a biofuel-producing microbial pathway, but no information about how the pathway actually works. It then uses data from previous experiments to learn how the pathway will behave. The scientists used the technique to automatically predict the amount of biofuel produced by pathways that have been added to E. coli bacterial cells.

Read More

Bioengineering team's 'circuit' work may benefit gene therapy

phys.org | March 06, 2018

Tyler Quarton, a bioengineering graduate student, and Dr. Leonidas Bleris, associate professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science, said they hope their work, published in Systems Biology and Applications, has a big impact on synthetic biology and gene therapy. Every living cell contains a compilation of genes, which serves as the blueprint for all the biological activity within a cell. Bleris explained this system by comparing genes to musicians. Their collective expression creates a genetic symphony that can invoke a multitude of cellular emotions, calming or exciting the cell when appropriate. Stretching this analogy, the conductor of this symphony, equipped with a waving baton, can quiet an individual or whole section if they begin to play too loudly.

Read More

Events