A New Genetic Alphabet Is Creating Things Nature Has Never Seen

| January 10, 2019

article image
If you thought DNA was made of just A, T, G and C-- think again. Scientists have been expanding these options, and the resulting organisms could create the impossible. The genetic code that creates all life on Earth consists of four nucleotide bases: Adenine, Thymine, Cytosine, and Guanine. In the double-stranded helix of DNA, these bases pair up with each other in a certain way. In recent years, researchers have been able to expand the genetic code with new, synthetic bases.

Spotlight

Nanolike

Nanolike® is an innovative company specialized in nanoparticle based devices development and manufacturing, notably active areas of sensors (nanosensors). Expert in the controlled deposit of nano-objects on rigid or flexible surfaces, Nanolike® puts its technological expertise at your disposal:

OTHER ARTICLES

5 Biotech Stocks Winning the Coronavirus Race

Article | April 13, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Learning How FoxA2 Helps Turn Stem Cells into Organs

Article | March 18, 2020

Scientists at the Perelman School of Medicine at the University of Pennsylvania discovered early on in each cell, FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation. The discovery, “Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones,” published in Nature Genetics, helps untangle mysteries of how embryonic stem cells develop into organs, according to the researchers. “Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon,” write the investigators.

Read More

Making Predictions by Digitizing Bioprocessing

Article | April 20, 2021

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

Nanolike

Nanolike® is an innovative company specialized in nanoparticle based devices development and manufacturing, notably active areas of sensors (nanosensors). Expert in the controlled deposit of nano-objects on rigid or flexible surfaces, Nanolike® puts its technological expertise at your disposal:

Events