A new era in mosquito-borne disease surveillance

Krisztian Magori (@BiteOfAMosquito) discusses the newest innovation in arbovirus surveillance, using mosquito excreta to test for mosquito-borne pathogens.

Spotlight

Circulomics Inc

Circulomics is a Maryland biotechnology company that spun out of a $14M Cancer Nanomedicine Center at Johns Hopkins to commercialize micro- and nanotechnology enabled tools for biomarker analysis and cancer diagnostics. These tools include Nanobind DNA/RNA Extraction Technology, Ligo-miR Multiplexed microRNA Assay, and PicoSep Single Molecule DNA Sizing Platform.

OTHER ARTICLES
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | September 22, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
Research

Better Purification and Recovery in Bioprocessing

Article | July 11, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | July 20, 2022

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | October 7, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More

Spotlight

Circulomics Inc

Circulomics is a Maryland biotechnology company that spun out of a $14M Cancer Nanomedicine Center at Johns Hopkins to commercialize micro- and nanotechnology enabled tools for biomarker analysis and cancer diagnostics. These tools include Nanobind DNA/RNA Extraction Technology, Ligo-miR Multiplexed microRNA Assay, and PicoSep Single Molecule DNA Sizing Platform.

Related News

Medical

United Health Foundation Partners With Harris-Stowe State University to Create New Bioinformatics Program

Harris-Stowe State University, United Health Foundation | November 20, 2021

The United Health Foundation, the philanthropic foundation of UnitedHealth Group (NYSE: UNH), has awarded a $2 million, three-year grant to Harris-Stowe State University to create a bioinformatics program for undergraduate students at the historically Black university located in St. Louis. Bioinformatics is an emerging field that combines science, physics, math and biology to aid in the diagnosis, treatment and discovery of new therapeutic advancements. An example of bioinformatics is the use of computer analysis on the Human Genome Project, which has recorded the 3 billion basic pairs of the human DNA system. HSSU will develop a new undergraduate program to train students for careers as bioinformatics professionals. HSSU will use the support to Develop new curricula combining coursework and experiential learning opportunities. Expose high school students in surrounding school districts to the field of bioinformatics through a summer bioinformatics “boot camp” program. Offer academic scholarships for up to 25 students each year. “In the past decade, Harris-Stowe State University has emerged as a leader in training students for high-tech careers. This new program will help us to build on that important work, as well as continue to fulfill our mission of serving historically underrepresented students. Bioinformatics is a rapidly growing field of study, and it is vital for all people to play a role in its advancement.” Dr. LaTonia Collins Smith, interim president of HSSU Studies have shown that there is a substantial gap in the number of diverse college students trained in biomedical sciences. Black, Hispanic and Native American people account for only 7.1% of the employed biological/biomedical and life sciences workforce, according to the National Science Foundation. A diverse health workforce helps provide personalized, culturally competent care to an increasingly diverse population. “The United Health Foundation is honored to collaborate with Harris-Stowe State University to increase the diversity of the life sciences workforce. We are excited about HSSU training students who will make discoveries, develop therapies and advance health care for all,” said Patrick Quinn, CEO of UnitedHealthcare in Missouri, a UnitedHealth Group company. “This partnership illustrates UnitedHealth Group’s commitment to health equity and to building a diverse health workforce reflective of our society.” The commitment in Missouri is one of many ways UnitedHealth Group is working to advance health equity by diversifying the health workforce of the future. The United Health Foundation’s Diverse Scholars Initiative, for example, partners with nine nonprofit and civic organizations and has provided over 3,000 scholarships to diverse students studying medicine and public health across the U.S. since 2007. Optum Technology, part of Optum which is a UnitedHealth Group company, offers a mentor-led STEM program that has provided science, technology, engineering and mathematics training to over 7,000 diverse and underrepresented students at 103 middle and high schools since 2019. To learn more about the company’s commitment to health equity as well as its efforts to build healthier communities, improve outcomes and create a modern, high-performing health care system. About Harris-Stowe State University For over 160 years, Harris-Stowe State University (HSSU) has served the historically underrepresented. As a Historically Black College and University, HSSU is strongly committed to providing a high-quality higher education experience that is both affordable and accessible to the diverse populations within and beyond the metropolitan St. Louis region. More than 90% of student population are racially and ethnically diverse and receive some form of financial aid. About the United Health Foundation Through collaboration with community partners, grants and outreach efforts, the United Health Foundation works to improve our health system, build a diverse and dynamic health workforce and enhance the well-being of local communities. The United Health Foundation was established by UnitedHealth Group (NYSE: UNH) in 1999 as a not-for-profit, private foundation dedicated to improving health and health care. To date, the United Health Foundation has committed more than $500 million to programs and communities around the world.

Read More

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Medical

Mogrify announces Exploratory Research Collaboration with MRC Laboratory of Molecular Biology

Mogrify | January 11, 2021

Mogrify Limited (Mogrify®), a UK organization expecting to change the advancement of ex vivo cell therapies and pioneer the field of in vivo reconstructing treatments, and the MRC Laboratory of Molecular Biology (LMB), a top notch research lab committed to understanding significant natural cycles at the sub-atomic level, today reported an exploratory examination cooperation. The venture intends to create novel protein articulation frameworks by utilizing late advances in direct cell reconstructing to help improve the creation of proteins which are not delivered adequately well in existing articulation frameworks. The MOGRIFY® technology will be applied to foresee mixes of record variables to incite trans-separation starting with one cell type then onto the next. The subsequent objective cell types could give analysts improved admittance to significant proteins found in human cell types that are hard to get and take into consideration more efficient protein production. Mogrify will get admittance to any licensed innovation and skill created during the undertaking, further empowering the commercialization of the innovation in regions of remedial worth. This coordinated effort is a development of the Company's relationship with the MRC LMB and follows the declaration in December 2020 that it had made sure about a restrictive permit from the MRC LMB to an upgraded form of MOGRIFY technology empowering more precise record factor expectations and improved cell transformation viability. In the interest of the MRC, the clinical exploration noble cause LifeArc encouraged the restrictive permit of the new form of Mogrify's center reconstructing stage, and together arranged the legitimate structure to empower a fruitful cooperation between the MRC and Mogrify.

Read More

Medical

United Health Foundation Partners With Harris-Stowe State University to Create New Bioinformatics Program

Harris-Stowe State University, United Health Foundation | November 20, 2021

The United Health Foundation, the philanthropic foundation of UnitedHealth Group (NYSE: UNH), has awarded a $2 million, three-year grant to Harris-Stowe State University to create a bioinformatics program for undergraduate students at the historically Black university located in St. Louis. Bioinformatics is an emerging field that combines science, physics, math and biology to aid in the diagnosis, treatment and discovery of new therapeutic advancements. An example of bioinformatics is the use of computer analysis on the Human Genome Project, which has recorded the 3 billion basic pairs of the human DNA system. HSSU will develop a new undergraduate program to train students for careers as bioinformatics professionals. HSSU will use the support to Develop new curricula combining coursework and experiential learning opportunities. Expose high school students in surrounding school districts to the field of bioinformatics through a summer bioinformatics “boot camp” program. Offer academic scholarships for up to 25 students each year. “In the past decade, Harris-Stowe State University has emerged as a leader in training students for high-tech careers. This new program will help us to build on that important work, as well as continue to fulfill our mission of serving historically underrepresented students. Bioinformatics is a rapidly growing field of study, and it is vital for all people to play a role in its advancement.” Dr. LaTonia Collins Smith, interim president of HSSU Studies have shown that there is a substantial gap in the number of diverse college students trained in biomedical sciences. Black, Hispanic and Native American people account for only 7.1% of the employed biological/biomedical and life sciences workforce, according to the National Science Foundation. A diverse health workforce helps provide personalized, culturally competent care to an increasingly diverse population. “The United Health Foundation is honored to collaborate with Harris-Stowe State University to increase the diversity of the life sciences workforce. We are excited about HSSU training students who will make discoveries, develop therapies and advance health care for all,” said Patrick Quinn, CEO of UnitedHealthcare in Missouri, a UnitedHealth Group company. “This partnership illustrates UnitedHealth Group’s commitment to health equity and to building a diverse health workforce reflective of our society.” The commitment in Missouri is one of many ways UnitedHealth Group is working to advance health equity by diversifying the health workforce of the future. The United Health Foundation’s Diverse Scholars Initiative, for example, partners with nine nonprofit and civic organizations and has provided over 3,000 scholarships to diverse students studying medicine and public health across the U.S. since 2007. Optum Technology, part of Optum which is a UnitedHealth Group company, offers a mentor-led STEM program that has provided science, technology, engineering and mathematics training to over 7,000 diverse and underrepresented students at 103 middle and high schools since 2019. To learn more about the company’s commitment to health equity as well as its efforts to build healthier communities, improve outcomes and create a modern, high-performing health care system. About Harris-Stowe State University For over 160 years, Harris-Stowe State University (HSSU) has served the historically underrepresented. As a Historically Black College and University, HSSU is strongly committed to providing a high-quality higher education experience that is both affordable and accessible to the diverse populations within and beyond the metropolitan St. Louis region. More than 90% of student population are racially and ethnically diverse and receive some form of financial aid. About the United Health Foundation Through collaboration with community partners, grants and outreach efforts, the United Health Foundation works to improve our health system, build a diverse and dynamic health workforce and enhance the well-being of local communities. The United Health Foundation was established by UnitedHealth Group (NYSE: UNH) in 1999 as a not-for-profit, private foundation dedicated to improving health and health care. To date, the United Health Foundation has committed more than $500 million to programs and communities around the world.

Read More

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Medical

Mogrify announces Exploratory Research Collaboration with MRC Laboratory of Molecular Biology

Mogrify | January 11, 2021

Mogrify Limited (Mogrify®), a UK organization expecting to change the advancement of ex vivo cell therapies and pioneer the field of in vivo reconstructing treatments, and the MRC Laboratory of Molecular Biology (LMB), a top notch research lab committed to understanding significant natural cycles at the sub-atomic level, today reported an exploratory examination cooperation. The venture intends to create novel protein articulation frameworks by utilizing late advances in direct cell reconstructing to help improve the creation of proteins which are not delivered adequately well in existing articulation frameworks. The MOGRIFY® technology will be applied to foresee mixes of record variables to incite trans-separation starting with one cell type then onto the next. The subsequent objective cell types could give analysts improved admittance to significant proteins found in human cell types that are hard to get and take into consideration more efficient protein production. Mogrify will get admittance to any licensed innovation and skill created during the undertaking, further empowering the commercialization of the innovation in regions of remedial worth. This coordinated effort is a development of the Company's relationship with the MRC LMB and follows the declaration in December 2020 that it had made sure about a restrictive permit from the MRC LMB to an upgraded form of MOGRIFY technology empowering more precise record factor expectations and improved cell transformation viability. In the interest of the MRC, the clinical exploration noble cause LifeArc encouraged the restrictive permit of the new form of Mogrify's center reconstructing stage, and together arranged the legitimate structure to empower a fruitful cooperation between the MRC and Mogrify.

Read More

Events