A Baby Was Born With DNA From Three People in Controversial Technique

The experimental IVF treatment is called mitochondrial donation. It consists of using an egg from the mother, sperm from the father and another egg from a female donor. UK experts have now criticized the treatment saying it involved unjustifiable risks. Tim Child, an associate professor at the University of Oxford and the medical director of the Fertility Partnership, told The Guardian: “The risks of the technique aren’t entirely known, though may be considered acceptable if being used to treat mitochondrial disease, but not in this situation.

Spotlight

ViMedicus

The ViMedicus ViCare Integrated Health Coaching platform delivers customized, 24/7 lifestyle and behavioral change for multi chronic individuals using licensed counselors supported by technology. We provide self-insured employers and other payers with a solution for their most costly participants. Patient self-care is key to better outcomes and lower costs but requires continuous coordination. The ViCare platform provides that support.

OTHER ARTICLES
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | July 13, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 12, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
MedTech

Biotech in 2022

Article | September 22, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MedTech

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

ViMedicus

The ViMedicus ViCare Integrated Health Coaching platform delivers customized, 24/7 lifestyle and behavioral change for multi chronic individuals using licensed counselors supported by technology. We provide self-insured employers and other payers with a solution for their most costly participants. Patient self-care is key to better outcomes and lower costs but requires continuous coordination. The ViCare platform provides that support.

Related News

Oxitec Signs New Multi-year Development Agreement to Apply 2nd Generation Technology to Control Soybean Looper

Prnewswire | April 16, 2019

a UK-based biotechnology company that pioneered the use of biologically-engineered insects to control disease-spreading mosquitoes and crop-destroying agricultural pests and a wholly-owned subsidiary of Intrexon (NASDAQ: XON), has announced the signing of a new multi-year development agreement with a collaborator to develop a self-limiting soybean looper (Chrysodeixis includens) to suppress this damaging agricultural pest that is found throughout the Americas. Soybean looper threatens a variety of crops, primarily soybeans as well as cotton, sweet potatoes, peanuts, lettuce, herbs, tomato, tobacco, and others. It has been historically difficult to control due to growing insecticide resistance. Additionally, individual adult females can lay up to 700 eggs each in their lifetime, allowing a small number of insects to exponentially grow in a very short time span. Oxitec's self-limiting soybean looper will leverage the advantages and benefits of Oxitec's 2nd generation technology as part of their commitment to advancing a new global standard for targeted, safe pest management using self-limiting insects. "Soybean looper threatens crops in the Americas, especially in Brazil and the US, where current control tools are under pressure. It is necessary to rapidly deploy new, safe and targeted technologies," said Grey Frandsen, Chief Executive Officer at Oxitec. "Our targeted biologically-based approach offers the opportunity to suppress this major agricultural pest, prevent widespread crop losses and, perhaps most importantly, complement the newest generations of other valuable pest control methods." As the need for agricultural productivity increases, so does the need for novel pest management solutions. Oxitec's approach has the potential to counter against insects developing resistance to both new and existing methods of insect control.

Read More

Scientists develop artificial chemical receptor to assist viral transduction for T cell engineering

Phys.org | April 15, 2019

Engineered T cell immunotherapy, such as chimeric antigen receptor T cell (CAR-T) and T cell receptor T cell (TCR-T) therapy, has emerged as a potent therapeutic strategy for treating tumors. However, the genetic manipulation of primary T cells remains inefficient, especially during the clinical manufacturing process. There's an urgent need to develop a reliable method for the preparation of engineered T cells. A research team led by Prof. Cai Lintao at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences and other collaborators developed a "safe, efficient and universal" technique based on bioorthogonal chemistry and glycol-metabolic labeling for viral-mediated engineered T cell manufacturing. Their findings were published in Advanced Functional Materials. In this strategy, the functional azide motifs were anchored on T cell surfaces via the intrinsic glycometabolism of exogenous azide-glucose, thus serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyne (DBCO)/-conjugated PEI1.8K (PEI-DBCO) was coated on the lentiviral surface, which strengthened the virus-T cell interaction through DBCO/azide bioorthogonal chemistry.

Read More

Engineering Accuracy in CRISPR

Technologynetworks | April 16, 2019

Biomedical engineers at Duke University have developed a method for improving the accuracy of the CRISPR genome editing technology by an average of 50-fold. They believe it can be easily translated to any of the editing technology's continually expanding formats. The approach adds a short tail to the guide RNA which is used to identify a sequence of DNA for editing. This added tail folds back and binds onto itself, creating a "lock" that can only be undone by the targeted DNA sequence. The study appears online on April 15 in the journal Nature Biotechnology. "CRISPR is generally incredibly accurate, but there are examples that have shown off-target activity, so there's been broad interest across the field in increasing specificity," said Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering at Duke. "But the solutions proposed thus far cannot be easily translated between different CRISPR systems." CRISPR/Cas9 is a defense system that bacteria use to target and cleave the DNA of invading viruses. While the first version of CRISPR technology engineered to work in human cells originated from a bacteria called Streptococcus pyogenes, many more bacteria species carry other versions. Scientists in the field have spent years looking for new CRISPR systems with desirable properties and are constantly adding to the CRISPR arsenal. For example, some systems are smaller and better able to fit inside of a viral vector to deliver to human cells for gene therapy. But no matter their individual abilities, all have produced unwanted genetic edits at times.

Read More

Oxitec Signs New Multi-year Development Agreement to Apply 2nd Generation Technology to Control Soybean Looper

Prnewswire | April 16, 2019

a UK-based biotechnology company that pioneered the use of biologically-engineered insects to control disease-spreading mosquitoes and crop-destroying agricultural pests and a wholly-owned subsidiary of Intrexon (NASDAQ: XON), has announced the signing of a new multi-year development agreement with a collaborator to develop a self-limiting soybean looper (Chrysodeixis includens) to suppress this damaging agricultural pest that is found throughout the Americas. Soybean looper threatens a variety of crops, primarily soybeans as well as cotton, sweet potatoes, peanuts, lettuce, herbs, tomato, tobacco, and others. It has been historically difficult to control due to growing insecticide resistance. Additionally, individual adult females can lay up to 700 eggs each in their lifetime, allowing a small number of insects to exponentially grow in a very short time span. Oxitec's self-limiting soybean looper will leverage the advantages and benefits of Oxitec's 2nd generation technology as part of their commitment to advancing a new global standard for targeted, safe pest management using self-limiting insects. "Soybean looper threatens crops in the Americas, especially in Brazil and the US, where current control tools are under pressure. It is necessary to rapidly deploy new, safe and targeted technologies," said Grey Frandsen, Chief Executive Officer at Oxitec. "Our targeted biologically-based approach offers the opportunity to suppress this major agricultural pest, prevent widespread crop losses and, perhaps most importantly, complement the newest generations of other valuable pest control methods." As the need for agricultural productivity increases, so does the need for novel pest management solutions. Oxitec's approach has the potential to counter against insects developing resistance to both new and existing methods of insect control.

Read More

Scientists develop artificial chemical receptor to assist viral transduction for T cell engineering

Phys.org | April 15, 2019

Engineered T cell immunotherapy, such as chimeric antigen receptor T cell (CAR-T) and T cell receptor T cell (TCR-T) therapy, has emerged as a potent therapeutic strategy for treating tumors. However, the genetic manipulation of primary T cells remains inefficient, especially during the clinical manufacturing process. There's an urgent need to develop a reliable method for the preparation of engineered T cells. A research team led by Prof. Cai Lintao at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences and other collaborators developed a "safe, efficient and universal" technique based on bioorthogonal chemistry and glycol-metabolic labeling for viral-mediated engineered T cell manufacturing. Their findings were published in Advanced Functional Materials. In this strategy, the functional azide motifs were anchored on T cell surfaces via the intrinsic glycometabolism of exogenous azide-glucose, thus serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyne (DBCO)/-conjugated PEI1.8K (PEI-DBCO) was coated on the lentiviral surface, which strengthened the virus-T cell interaction through DBCO/azide bioorthogonal chemistry.

Read More

Engineering Accuracy in CRISPR

Technologynetworks | April 16, 2019

Biomedical engineers at Duke University have developed a method for improving the accuracy of the CRISPR genome editing technology by an average of 50-fold. They believe it can be easily translated to any of the editing technology's continually expanding formats. The approach adds a short tail to the guide RNA which is used to identify a sequence of DNA for editing. This added tail folds back and binds onto itself, creating a "lock" that can only be undone by the targeted DNA sequence. The study appears online on April 15 in the journal Nature Biotechnology. "CRISPR is generally incredibly accurate, but there are examples that have shown off-target activity, so there's been broad interest across the field in increasing specificity," said Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering at Duke. "But the solutions proposed thus far cannot be easily translated between different CRISPR systems." CRISPR/Cas9 is a defense system that bacteria use to target and cleave the DNA of invading viruses. While the first version of CRISPR technology engineered to work in human cells originated from a bacteria called Streptococcus pyogenes, many more bacteria species carry other versions. Scientists in the field have spent years looking for new CRISPR systems with desirable properties and are constantly adding to the CRISPR arsenal. For example, some systems are smaller and better able to fit inside of a viral vector to deliver to human cells for gene therapy. But no matter their individual abilities, all have produced unwanted genetic edits at times.

Read More

Events