Genetics Outlook 2017: The Revolution Nears

Experts say it could be drawing closer. 2016 brought numerous developments that forwarded the areas of genetic or stem cell research. Just take a look at the IPOs: numerous biotechs went public this year that are centered on CRISPR-Cas9 technology. In the UK, the Human Fertilisation and Embryology Authority became the first regulatory agency ever to approve genetic modifications in viable human embryos. These developments seem to indicate that public acceptance of genetics research is growing—a suspicion that Thomas Bold, CEO of stem cell therapy company RenovaCare (OTCQB:RCAR), confirmed for us.

Spotlight

Internal Systems Limited (ISL)

ISL deliver fully managed pro-active outsourced IT Support covering an organisations complete IT environment, including desktops, servers, mobile devices, Anti Virus and Backup. Our service is 24/7 delivering excellence and maximum uptime for your business.

OTHER ARTICLES
MedTech

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | September 22, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | July 13, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More
MedTech

AI and Biotechnology: The Future of Healthcare Industry

Article | July 11, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 13, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More

Spotlight

Internal Systems Limited (ISL)

ISL deliver fully managed pro-active outsourced IT Support covering an organisations complete IT environment, including desktops, servers, mobile devices, Anti Virus and Backup. Our service is 24/7 delivering excellence and maximum uptime for your business.

Related News

Cell and Gene Therapy

MUSC and Helix launch In Our DNA SC, first-of-its-kind population genomics program to drive preventive, precision health care for South Carolinians

Helix | September 21, 2021

The Medical University of South Carolina (MUSC) and Helix have announced a strategic collaboration to develop a first-of-its-kind population genomics initiative in South Carolina called In Our DNA SC. The large-scale program is designed to improve health care outcomes by integrating genetic insights into clinical care and research. The statewide initiative will enroll 100,000 patients in genetic testing over the next four years at no cost to the patient. The program will enable the use of genomic insights with an initial focus on actionable information regarding a patient's risk for certain forms of cancer and cardiovascular disease. The genetic reports will allow patients and their health providers to develop precision health care plans to proactively mitigate the conditions and take a more preventive approach to patient care. Patient enrollment in In Our DNA SC is expected to begin in the fall. Medical University of South Carolina and Helix to develop a first-of-its-kind genomics initiative called In Our DNA SC. In addition, MUSC and Helix will be developing a robust clinico-genomic dataset from consenting participants that will help researchers learn what can cause certain diseases, how we may be able to treat them more effectively and, possibly, improve the standard care for everyone. This is expected to lay the groundwork for a broader collaboration with other organizations across the health care value chain. As South Carolina's only comprehensive academic health sciences center, delivering the highest quality care throughout the state is our top priority. Precision medicine is an emerging field that is going to transform the future delivery of health care. Being a leader and helping to define this path is core to our mission. We are excited to have the opportunity to partner with Helix to deploy this first-of-its-kind population genomic program for our patients. This collaboration will help drive preventive, precision health care for South Carolinians. - David J. Cole, M.D., FACS, MUSC president The strategic relationship with Helix allows MUSC to leverage Helix's unique Sequence Once, Query Often™ model and its end-to-end integration platform to enable immediate application and continual on-demand use of genetic insights throughout a patient's life. By working with South Carolina's only integrated academic health sciences center in the state, Helix gains access to thousands of providers and research staff dedicated to understanding how to deliver the highest quality patient care available to serve the people of South Carolina and beyond. Enrollment in the program will initially be available to patients who sign up at select MUSC clinics and locations, later expanding to participants throughout the community and state in collaboration with MUSC's clinical affiliates and partners. Additionally, participants who consent to securely contribute their genetic data will help MUSC develop one of the largest clinico-genomic datasets in the country. Analyses from this platform will be used to pioneer and further advance genomics research. About the Medical University of South Carolina Founded in 1824 in Charleston, MUSC is home to the oldest medical school in the South as well as the state's only integrated academic health sciences center, with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and nearly 800 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. MUSC brought in more than $271 million in biomedical research funds in fiscal year 2020, continuing to lead the state in obtaining National Institutes of Health funding, with more than $129.9 million. As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality and safe patient care while training generations of compassionate, competent health care providers to serve the people of South Carolina and beyond. Close to 25,000 care team members provide care for patients at 14 hospitals with approximately 2,500 beds and 5 additional hospital locations in development, more than 300 telehealth sites and nearly 750 care locations situated in the Lowcountry, Midlands, Pee Dee and Upstate regions of South Carolina. In 2021, for the seventh consecutive year, U.S. News & World Report named MUSC Health the No. 1 hospital in South Carolina.MUSC and its affiliates have collective annual budgets of $4.4 billion. The more than 25,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care. About Helix Helix is the leading population genomics company operating at the intersection of clinical care, research, and genomics. Its end-to-end platform enables health systems, life sciences companies, and payers to advance genomic research and accelerate the integration of genomic data into clinical care. Powered by one of the world's largest CLIA / CAP next-generation sequencing labs and the first and only FDA authorized whole exome sequencing platform, Helix supports all aspects of population genomics including recruitment and engagement, clinically actionable disease screening, return of results, and basic and translational research. In response to the COVID-19 public health crisis, Helix has launched a sensitive and scalable end-to-end COVID-19 test system to meet the needs of health systems, employees, governments, and other organizations across the country.

Read More

MedTech

Oracle and Oxford Nanopore Team Up to Improve Healthcare and Speed Discovery of New Medical Breakthroughs

Oracle | September 16, 2021

Advances in DNA/RNA sequencing promise to revolutionize how medical communities identify, detect, and treat diseases and manage public health threats. To make this technology more accessible and increase its impact, Oracle has teamed up with Oxford Nanopore Technologies, the company behind a new generation of high-performance, rapid, scalable, and accessible sequencing technology. Oracle and Oxford Nanopore have recently begun a collaboration to jointly explore several potential new solutions that would use genomic sequencing running on Oracle Cloud Infrastructure (OCI) to help speed medical breakthroughs and improve patient care. Scientific researchers in more than 100 countries are already using nanopore sequencing to further their understanding of biology in a range of areas including human and cancer genetics as well as plant, animal, and environmental analyses. In addition, nanopore sequencing has been used for pathogen analysis, including the outbreak surveillance of tuberculosis, food-borne pathogens, Ebola, Zika, Lassa fever, dengue fever, influenza, and most recently COVID-19. As part of the collaboration, Oxford Nanopore will be using OCI in applied and clinical markets. Leveraging the high performance, security, and extensive reach of Oracle Cloud, Oracle and Oxford Nanopore will have the ability to extend population-scale genetic sequencing across the globe. The organizations will also take on several ambitious projects spanning epidemiology, whole-genome sequencing, and healthcare and drug discovery. This includes integrating Oxford Nanopore's DNA/RNA sequencing capabilities and data into Oracle's broad portfolio of healthcare and life sciences applications to strengthen the links between genomics, medical treatment, and drug development. Oxford Nanopore's innovative sequencing technology is unparalleled in the market for its ability to generate rich, accurate genomic data at any scale, from handheld devices to ultra-high output installations, By integrating genomic data into our existing applications and cloud infrastructure solutions, we can get these powerful tools into the hands of more people to solve critical health issues faster and improve patient outcomes to usher in a new era of genomic breakthrough. - Mike Sicilia, executive vice president of Oracle Vertical Industries. In parallel, Oracle has committed to investing £150 million in Oxford Nanopore, subject to customary conditions. About Oracle Oracle offers integrated suites of applications plus secure, autonomous infrastructure in the Oracle Cloud.

Read More

Medical

Precision NanoSystems is Now a Part of Danaher's Life Sciences Platform

Cytiva, Pall Corporation | June 02, 2021

Danaher Corporation's Life Sciences platform has acquired precision NanoSystems (PNI). PNI is a global leader in technologies and solutions for developing genetic medicines, including mRNA vaccines and therapeutics. PNI will join Danaher's Life Sciences platform and complement other businesses in the forum, including Cytiva and Pall. "PNI has advanced several exciting innovations, and we're thrilled to welcome this talented team," says Emmanuel Ligner, Danaher Group Executive. "As mRNA has matured as a successful technology in some COVID vaccines, we see huge potential for this technology to accelerate other therapies. The work done thus far by the PNI team will also enable our customers at Cytiva and Pall to take a huge step forward in advancing their science to improve the lives of patients." James Taylor, co-founder, and CEO of Precision NanoSystems, says: "Over the last ten years, PNI has been a leading technology company, enabling the development of genetic medicines. Joining Danaher's Life Sciences platform allows our world-class team to accelerate and expand the work we do to support our customers with comprehensive technology platforms and the expertise to manufacture transformative medicines for the benefit of humanity. With the global reach of the Danaher Life Sciences platform and customers who are leaders in biotechnology, this is an incredible opportunity to bring PNI's innovations to market and expand our impact." The overall mRNA therapeutics and vaccines market was growing rapidly and accelerated with the development of COVID-19 mRNA vaccines. It is anticipated that mRNA technology will be used to develop other vaccines and to treat other conditions of high unmet medical need, such as cancer and genetic diseases. At present, most mRNA therapies and other types of genetic medicines in clinical development are designed to be delivered with the help of lipid nanoparticles (LNPs). PNI's Genetic Medicine Toolkit, including its proprietary GenVoyTM LNP delivery platform and NanoAssemblrTM microfluidic-based nanoparticle manufacturing platform, enables the rapid development of genetic medicines. PNI's validated technologies increase the stability, efficacy, yield, and quality of non-viral genetic medication and lower the barrier to develop these essential medicines. PNI is developing a new center of manufacturing excellence in Vancouver, which will proceed as planned. When complete, the biomanufacturing center will further advance Canadian therapeutic and vaccine manufacturing capabilities, broaden the domestic life sciences sector, create new jobs in the region, and foster a new generation of scientific talent. About Pall Pall Corporation may be a filtration, separation, and purification leader providing solutions to meet customers' critical fluid management needs across the broad spectrum of life sciences and industry. Pall works with customers to advance health, safety, and environmentally responsible technologies. The Company's engineered products enable process and product innovation and minimize emissions and waste. Pall Corporation serves customers worldwide. About Cytiva Cytiva is a global life science leader with more than 8,000 associates across 40 countries dedicated to advancing and accelerating therapeutics. As a trusted partner to customers that range in scale and scope, Cytiva brings speed, efficiency, and capacity to research and manufacture workflows, enabling the development, manufacture, and delivery of transformative medicines to patients.

Read More

Cell and Gene Therapy

MUSC and Helix launch In Our DNA SC, first-of-its-kind population genomics program to drive preventive, precision health care for South Carolinians

Helix | September 21, 2021

The Medical University of South Carolina (MUSC) and Helix have announced a strategic collaboration to develop a first-of-its-kind population genomics initiative in South Carolina called In Our DNA SC. The large-scale program is designed to improve health care outcomes by integrating genetic insights into clinical care and research. The statewide initiative will enroll 100,000 patients in genetic testing over the next four years at no cost to the patient. The program will enable the use of genomic insights with an initial focus on actionable information regarding a patient's risk for certain forms of cancer and cardiovascular disease. The genetic reports will allow patients and their health providers to develop precision health care plans to proactively mitigate the conditions and take a more preventive approach to patient care. Patient enrollment in In Our DNA SC is expected to begin in the fall. Medical University of South Carolina and Helix to develop a first-of-its-kind genomics initiative called In Our DNA SC. In addition, MUSC and Helix will be developing a robust clinico-genomic dataset from consenting participants that will help researchers learn what can cause certain diseases, how we may be able to treat them more effectively and, possibly, improve the standard care for everyone. This is expected to lay the groundwork for a broader collaboration with other organizations across the health care value chain. As South Carolina's only comprehensive academic health sciences center, delivering the highest quality care throughout the state is our top priority. Precision medicine is an emerging field that is going to transform the future delivery of health care. Being a leader and helping to define this path is core to our mission. We are excited to have the opportunity to partner with Helix to deploy this first-of-its-kind population genomic program for our patients. This collaboration will help drive preventive, precision health care for South Carolinians. - David J. Cole, M.D., FACS, MUSC president The strategic relationship with Helix allows MUSC to leverage Helix's unique Sequence Once, Query Often™ model and its end-to-end integration platform to enable immediate application and continual on-demand use of genetic insights throughout a patient's life. By working with South Carolina's only integrated academic health sciences center in the state, Helix gains access to thousands of providers and research staff dedicated to understanding how to deliver the highest quality patient care available to serve the people of South Carolina and beyond. Enrollment in the program will initially be available to patients who sign up at select MUSC clinics and locations, later expanding to participants throughout the community and state in collaboration with MUSC's clinical affiliates and partners. Additionally, participants who consent to securely contribute their genetic data will help MUSC develop one of the largest clinico-genomic datasets in the country. Analyses from this platform will be used to pioneer and further advance genomics research. About the Medical University of South Carolina Founded in 1824 in Charleston, MUSC is home to the oldest medical school in the South as well as the state's only integrated academic health sciences center, with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and nearly 800 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. MUSC brought in more than $271 million in biomedical research funds in fiscal year 2020, continuing to lead the state in obtaining National Institutes of Health funding, with more than $129.9 million. As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality and safe patient care while training generations of compassionate, competent health care providers to serve the people of South Carolina and beyond. Close to 25,000 care team members provide care for patients at 14 hospitals with approximately 2,500 beds and 5 additional hospital locations in development, more than 300 telehealth sites and nearly 750 care locations situated in the Lowcountry, Midlands, Pee Dee and Upstate regions of South Carolina. In 2021, for the seventh consecutive year, U.S. News & World Report named MUSC Health the No. 1 hospital in South Carolina.MUSC and its affiliates have collective annual budgets of $4.4 billion. The more than 25,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care. About Helix Helix is the leading population genomics company operating at the intersection of clinical care, research, and genomics. Its end-to-end platform enables health systems, life sciences companies, and payers to advance genomic research and accelerate the integration of genomic data into clinical care. Powered by one of the world's largest CLIA / CAP next-generation sequencing labs and the first and only FDA authorized whole exome sequencing platform, Helix supports all aspects of population genomics including recruitment and engagement, clinically actionable disease screening, return of results, and basic and translational research. In response to the COVID-19 public health crisis, Helix has launched a sensitive and scalable end-to-end COVID-19 test system to meet the needs of health systems, employees, governments, and other organizations across the country.

Read More

MedTech

Oracle and Oxford Nanopore Team Up to Improve Healthcare and Speed Discovery of New Medical Breakthroughs

Oracle | September 16, 2021

Advances in DNA/RNA sequencing promise to revolutionize how medical communities identify, detect, and treat diseases and manage public health threats. To make this technology more accessible and increase its impact, Oracle has teamed up with Oxford Nanopore Technologies, the company behind a new generation of high-performance, rapid, scalable, and accessible sequencing technology. Oracle and Oxford Nanopore have recently begun a collaboration to jointly explore several potential new solutions that would use genomic sequencing running on Oracle Cloud Infrastructure (OCI) to help speed medical breakthroughs and improve patient care. Scientific researchers in more than 100 countries are already using nanopore sequencing to further their understanding of biology in a range of areas including human and cancer genetics as well as plant, animal, and environmental analyses. In addition, nanopore sequencing has been used for pathogen analysis, including the outbreak surveillance of tuberculosis, food-borne pathogens, Ebola, Zika, Lassa fever, dengue fever, influenza, and most recently COVID-19. As part of the collaboration, Oxford Nanopore will be using OCI in applied and clinical markets. Leveraging the high performance, security, and extensive reach of Oracle Cloud, Oracle and Oxford Nanopore will have the ability to extend population-scale genetic sequencing across the globe. The organizations will also take on several ambitious projects spanning epidemiology, whole-genome sequencing, and healthcare and drug discovery. This includes integrating Oxford Nanopore's DNA/RNA sequencing capabilities and data into Oracle's broad portfolio of healthcare and life sciences applications to strengthen the links between genomics, medical treatment, and drug development. Oxford Nanopore's innovative sequencing technology is unparalleled in the market for its ability to generate rich, accurate genomic data at any scale, from handheld devices to ultra-high output installations, By integrating genomic data into our existing applications and cloud infrastructure solutions, we can get these powerful tools into the hands of more people to solve critical health issues faster and improve patient outcomes to usher in a new era of genomic breakthrough. - Mike Sicilia, executive vice president of Oracle Vertical Industries. In parallel, Oracle has committed to investing £150 million in Oxford Nanopore, subject to customary conditions. About Oracle Oracle offers integrated suites of applications plus secure, autonomous infrastructure in the Oracle Cloud.

Read More

Medical

Precision NanoSystems is Now a Part of Danaher's Life Sciences Platform

Cytiva, Pall Corporation | June 02, 2021

Danaher Corporation's Life Sciences platform has acquired precision NanoSystems (PNI). PNI is a global leader in technologies and solutions for developing genetic medicines, including mRNA vaccines and therapeutics. PNI will join Danaher's Life Sciences platform and complement other businesses in the forum, including Cytiva and Pall. "PNI has advanced several exciting innovations, and we're thrilled to welcome this talented team," says Emmanuel Ligner, Danaher Group Executive. "As mRNA has matured as a successful technology in some COVID vaccines, we see huge potential for this technology to accelerate other therapies. The work done thus far by the PNI team will also enable our customers at Cytiva and Pall to take a huge step forward in advancing their science to improve the lives of patients." James Taylor, co-founder, and CEO of Precision NanoSystems, says: "Over the last ten years, PNI has been a leading technology company, enabling the development of genetic medicines. Joining Danaher's Life Sciences platform allows our world-class team to accelerate and expand the work we do to support our customers with comprehensive technology platforms and the expertise to manufacture transformative medicines for the benefit of humanity. With the global reach of the Danaher Life Sciences platform and customers who are leaders in biotechnology, this is an incredible opportunity to bring PNI's innovations to market and expand our impact." The overall mRNA therapeutics and vaccines market was growing rapidly and accelerated with the development of COVID-19 mRNA vaccines. It is anticipated that mRNA technology will be used to develop other vaccines and to treat other conditions of high unmet medical need, such as cancer and genetic diseases. At present, most mRNA therapies and other types of genetic medicines in clinical development are designed to be delivered with the help of lipid nanoparticles (LNPs). PNI's Genetic Medicine Toolkit, including its proprietary GenVoyTM LNP delivery platform and NanoAssemblrTM microfluidic-based nanoparticle manufacturing platform, enables the rapid development of genetic medicines. PNI's validated technologies increase the stability, efficacy, yield, and quality of non-viral genetic medication and lower the barrier to develop these essential medicines. PNI is developing a new center of manufacturing excellence in Vancouver, which will proceed as planned. When complete, the biomanufacturing center will further advance Canadian therapeutic and vaccine manufacturing capabilities, broaden the domestic life sciences sector, create new jobs in the region, and foster a new generation of scientific talent. About Pall Pall Corporation may be a filtration, separation, and purification leader providing solutions to meet customers' critical fluid management needs across the broad spectrum of life sciences and industry. Pall works with customers to advance health, safety, and environmentally responsible technologies. The Company's engineered products enable process and product innovation and minimize emissions and waste. Pall Corporation serves customers worldwide. About Cytiva Cytiva is a global life science leader with more than 8,000 associates across 40 countries dedicated to advancing and accelerating therapeutics. As a trusted partner to customers that range in scale and scope, Cytiva brings speed, efficiency, and capacity to research and manufacture workflows, enabling the development, manufacture, and delivery of transformative medicines to patients.

Read More

Events