Bacteria help discover human cancer-causing proteins

A team led by researchers at Baylor College of Medicine and the University of Texas at Austin has applied an unconventional approach that used bacteria to discover human proteins that can lead to DNA damage and promote cancer. Reported in the journal Cell, the study also proposes biological mechanisms by which these proteins can cause damage to DNA, opening possibilities for future cancer treatments. "Our cells make protein carcinogens," said co-corresponding author Dr. Susan M. Rosenberg, Ben F. Love Chair in Cancer Research and professor of molecular and human genetics, of molecular virology and microbiology and of biochemistry and molecular biology at Baylor. "Cancer is a disease of mutations. A normal cell that has accumulated several mutations in particular genes becomes likely to turn into a cancer cell." Mutations that cause cancer can be the result of DNA damage. External factors such as tobacco smoke and sunlight can damage DNA, but most DNA damage seems to result from events that occur within cells and is mediated by cellular components, including proteins. Despite the importance of these events, they have not been studied extensively.

Spotlight

Other News
Cell and Gene Therapy

Solvias to Perform Release Testing on World's First CRISPR-based Gene-Editing Therapy

Solvias | January 23, 2024

Solvias, a global provider of chemistry, manufacturing, and control (CMC) analytics, announced that it will perform analytical release testing services on the world's first CRISPR/Cas9 genome-edited cell therapy. The company has signed a long-term agreement with Vertex Pharmaceuticals for CASGEVY™ (exagamglogene autotemcel or exa-cel) which received U.S. Food & Drug Administration (FDA) approval for the treatment of sickle cell disease (SCD) in patients 12 years and older with recurrent vaso-occlusive crises. Solvias and Vertex Pharmaceuticals have worked together for several years to develop and validate test methods that are critical for the final release of patients' own edited cells, so that they can be delivered back to patients. The companies' collaboration included establishing the testing methods that will be scaled for commercializing CASGEVY. Solvias also has invested significantly in preparing one of its global facilities to support the commercial release work for this transformative therapy. Archie Cullen, Chief Executive Officer, Solvias, stated "Solvias is honored to be playing a critical role in delivering this breakthrough therapy to patients. Our decades of experience offering comprehensive GMP analytical services uniquely positions us to partner with companies in bringing their therapies to market. This collaboration highlights our deep scientific knowledge and creative solutions serving to advance even the most cutting-edge therapies." In addition to gaining FDA approval, CASGEVY recently received a positive opinion from the European Medicines Agency's (EMA's) Committee for Medicinal Products for Human Use for conditional approval of the treatment of severe SCD and transfusion-dependent beta thalassemia (TDT). About Solvias Solvias is a global provider of chemistry, manufacturing, and control (CMC) analytics to the pharmaceutical, biotech, material science, and cosmetic industries. Its team of scientists and regulatory experts have years of experience in small molecules, biologics, and cell and gene therapies. The company offers comprehensive solutions from raw materials to drug products to final release testing, as well as API development and manufacturing for small molecules. Headquartered near Basel, Switzerland, Solvias operates five facilities to the highest standards and in accordance with ISO, GMP, GLP and FDA regulations.

Read More

Industry Outlook

Virica Expands Bioprocessing Capabilities with Carleton University Partnership

Virica Biotech | January 17, 2024

Virica Biotech Inc. (“Virica”), a leading developer of cell enhancers for scaling of viral vector as well as cell and gene therapy manufacturing will expand its bioprocessing services through a partnership with Carleton University. Slated to open this spring, Virica’s new facility at the university multiplies the Company’s capacity to provide high throughput virology services for customers looking to optimize production of their cell and gene therapies. “Carleton’s new Health Sciences Building provides us with greater access to modern infrastructure and analytical expertise,” said Jean Simon Diallo, Ph.D., CEO of Virica Biotech. “Their state-of-the-art analytical research facilities and world-class researchers across multiple disciplines open the door to exciting opportunities for partnering with Carleton University as we continue to invest to meet customer demand.” “We are very pleased to welcome Virica Biotech to the Carleton campus,” said Rafik Goubran, Ph.D., Vice-President (Research and International) and Chancellor’s Professor, Carleton University. “This multi-year, multi-million-dollar research and infrastructure partnership will help drive innovation and talent development in the Ottawa region for the creation and manufacturing of advanced therapies.” This partnership expands on Carleton’s history of supporting Ottawa biotechnology companies. The new open concept facility will include high throughput equipment to accelerate Virica’s bioprocess development and optimizations. In addition to expanded modern infrastructure, this new location enables the development and recruitment of world-class talent with experiential learning and training opportunities for Carleton students. Through this partnership, Carleton will coordinate the establishment of a scholarship fund designed to empower graduate students from traditionally underrepresented groups in science. About Virica Biotech Virica develops cell enhancers for viral vectors that improve the yield and quality of vaccines and cell and gene therapies, allowing developers to economically deploy their products at scale. Virica’s Viral Sensitizer (VSE™) platform reduces production inefficiencies caused by anti-viral defenses in manufacturing cells. Purpose formulated VSE combinations substantially increase manufacturing yields and reduce the cost of goods for a range of life-changing products, including vaccines, gene therapies, and cell therapies. About Carleton University Carleton University is a dynamic, research-intensive institution that engages in partnerships to address the world’s most pressing challenges. The university’s corporate collaborations bring together world-class companies, researchers and a new generation of talent with over 30,000 students to deliver innovations and results that are driving a more prosperous, sustainable future.

Read More

Medical

Jnana Therapeutics Announces Positive Clinical Proof of Concept Achieved with JNT-517, a Potential First-in-Class Oral Treatment for PKU

Jnana Therapeutics, Inc. | February 02, 2024

Jnana Therapeutics, a clinical-stage biotechnology company leveraging its next-generation chemoproteomics platform to discover medicines for challenging-to-drug targets, today announced positive, statistically significant interim results from its ongoing clinical study of JNT-517 in individuals with phenylketonuria (PKU). JNT-517, a small molecule inhibitor of the phenylalanine (Phe) transporter SLC6A19, is being evaluated as a potential first-in-class oral treatment for PKU across all ages and genotypes. On the basis of these positive interim results, Jnana has adapted the Phase 1b trial design to support the potential for accelerated progression of JNT-517. “There is an urgent need for an oral, safe, and efficacious therapy for the more than 60% of individuals with PKU not currently on therapy. Across the spectrum of mild to severe disease, our results demonstrate a robust, sustained reduction in blood Phe levels, the registrational endpoint for PKU, giving us high confidence in the path forward for JNT-517,” said George Vratsanos, M.D., Chief Medical Officer and Head of R&D at Jnana Therapeutics. “We are also encouraged by this validation of the power of our RAPID platform to discover small molecules with compelling clinical benefit against challenging-to-drug targets.” JNT-517 is being studied in a randomized, double-blind, placebo-controlled trial in individuals with mild to severe PKU. Following a 28-day screening period focused predominantly on ensuring an average blood Phe level of >600µM, study participants were randomized with no run-in period to 75mg of JNT-517 twice daily (BID) or placebo. The planned interim analysis was based on 13 participants, eight dosed with JNT-517 and five dosed with placebo over 28 days, and demonstrated the following results JNT-517 led to a statistically significant (p=0.0019 vs. placebo) mean blood Phe reduction from baseline of 51%, measured per-protocol at day 28. A high response rate was seen where seven of eight (88%) treated participants achieved >30% reduction in blood Phe from baseline; five of eight (63%) achieved >45% reduction; and two of eight (25%) achieved >65% reduction. A robust response was seen across participants treated with JNT-517 irrespective of baseline blood Phe levels, which ranged from 593µM to 1,526µM with a mean of 1,124µM. A rapid onset of effect was observed with significant blood Phe reduction achieved within seven days after commencing dosing, which was sustained through the full 28 days of dosing. JNT-517 was safe and well tolerated with no serious adverse events and no clinically significant changes in laboratory parameters, consistent with the safety profile demonstrated in the Phase 1a healthy volunteer study. "JNT-517 represents a completely new therapeutic approach that could transform the current treatment paradigm in PKU, in particular for individuals with severe, or classical, PKU where there is the highest unmet medical need,” said Cary O. Harding, M.D., study investigator and Professor of Molecular and Medical Genetics at Oregon Health and Science University School of Medicine. “I am encouraged by the clinical results to date and look forward to working with Jnana and the PKU community to continue to advance this program.” Based on these interim results, Jnana has adapted the protocol of the ongoing trial to include dose exploration. Jnana expects topline data from the second dose cohort in mid-2024 and plans to submit full data from the two dose cohorts for presentation at a scientific meeting in the second half of 2024. Jnana anticipates the company will engage regulators in the second half of 2024 and seek to advance JNT-517 directly into a pivotal Phase 3 study in the first half of 2025. JNT-517 Phase 1b Clinical Trial The ongoing clinical program includes a randomized, double-blind, placebo-controlled trial evaluating the safety, tolerability, pharmacokinetics, and effect on blood and urinary Phe of JNT-517 dosed over a four-week period in individuals diagnosed with PKU. The study dosed its first participant with PKU in August 2023 and is enrolling individuals aged 18 to 65 at clinical sites in the United States and Australia. For more information about the study, please see clinicaltrials.gov (NCT05781399). About JNT-517 JNT-517 is a selective small molecule inhibitor of the Phe transporter SLC6A19 that has the potential to be a first-in-class oral therapy used to treat any person with PKU, regardless of age or genotype. JNT-517 acts at a novel, cryptic allosteric site to block kidney reabsorption of Phe and offers a promising new approach to reduce blood Phe levels. The U.S. Food and Drug Administration granted JNT-517 Rare Pediatric Disease Designation in late 2022. About PKU PKU is a rare inherited metabolic disorder caused by a deficiency of the enzyme phenylalanine hydroxylase (PAH). This enzyme is required for the breakdown of phenylalanine (Phe), an amino acid found in all protein-containing foods. When PAH is deficient or defective, Phe accumulates to abnormally high levels in the blood. If left untreated, toxic levels of Phe in the blood can result in progressive and severe neurological impairment and neuropsychological complications. The SLC transporter SLC6A19 is responsible for kidney reabsorption of Phe back into the bloodstream, and the inhibition of SLC6A19 offers a novel, oral approach for the treatment of PKU by facilitating urinary excretion of excess Phe. About Jnana Therapeutics Jnana Therapeutics is a clinical-stage biotechnology company leveraging its next-generation RAPID chemoproteomics platform to discover medicines for highly validated, challenging-to-drug targets to treat diseases with high unmet needs. Jnana is focused on developing first- and best-in-class therapies to treat a wide range of diseases, including rare diseases and immune-mediated diseases. Jnana’s wholly owned lead program, JNT-517, which targets an allosteric site on the phenylalanine transporter SLC6A19, is a potential first-in-class oral approach for the treatment of PKU, a rare genetic metabolic disease. Located in Boston, Jnana brings together scientific leaders in small molecule drug discovery and development, a highly experienced management team, and the backing of leading life science investors Bain Capital Life Sciences, RA Capital Management, Polaris Partners, Versant Ventures, Avalon Ventures, Pfizer Ventures, and AbbVie Ventures.

Read More

Medical

Personalis and ClearNote Health Announce Partnership to Advance Epigenomic Technology

Personalis, Inc. | February 05, 2024

Personalis, Inc. a leader in advanced genomics for cancer, and ClearNote Health, Inc., a pioneer in epigenomic technologies, today unveiled an alliance through which Personalis will expand its pharmaceutical service offerings by distributing ClearNote’s cutting-edge epigenomic 5-hydroxymethylcytosine (5hmC) platform. “We have built a unique pharma channel based on our industry-leading tissue and MRD assays and ClearNote Health’s blood-based epigenomic approach is complementary to our offering as it helps our customers deepen their understanding of a patient’s response to immunotherapies,” said Chris Hall, CEO and President of Personalis. “Commercial partnerships such as this broaden our portfolio and are expected to appeal to a wide range of biopharma customers and accelerate our revenue growth.” Echoing this sentiment, Dave Mullarkey, CEO of ClearNote Health, remarked, “Partnering with Personalis presents an excellent opportunity to bring our 5hmC technology to the forefront of cancer research. This alliance is a testament to the synergy between our two companies, enabling us to expand our reach and significantly impact the biopharmaceutical industry. Together, we can accelerate the development of personalized therapies and make a real difference in the lives of patients.” ClearNote Health’s Epigenomics Platform represents a groundbreaking advance in cancer detection, offering real-time insights into disease-specific pathways. By tracking changes in 5hmC levels coupled with artificial intelligence-based analytical methods, the platform can detect cancer earlier, monitor disease progression, understand mechanisms of resistance, and identify promising drug targets and biomarkers. These insights are invaluable for optimizing drug development programs and delivering more effective treatments to patients. The Epigenomics Platform identifies changes in gene activation and gene regulation by labeling specific changes in the 5hmC landscape from plasma-derived cell-free DNA. This rich biological information, as part of clinical trials, enables the monitoring of cancer therapies in real time and contributes to an understanding of drug resistance mechanisms. The partnership marks a pivotal moment in cancer research, leveraging the strengths of both companies to offer unparalleled solutions in the biopharmaceutical industry. About ClearNote Heath, Inc. ClearNote Health is a cancer detection company focused on enabling people at risk for high-mortality cancers to live longer, healthier lives. Utilizing a standard blood draw, the company applies its proprietary epigenomic platform, combining biology and artificial intelligence, to identify DNA-based changes in biology as cancer develops. With lead programs in non-invasive early detection of pancreatic and ovarian cancers in patients at the highest risk for these diseases, ClearNote Health identifies cancers before they progress and when patients are most likely to benefit from treatment. ClearNote Health’s first commercially available test is the Avantect™ Pancreatic Cancer Test, which detects the presence of pancreatic cancer signals in patients at high risk of the disease, including those recently diagnosed with Type 2 diabetes. ClearNote Health is headquartered in San Diego, with additional presence in the San Francisco Bay area and internationally. The company’s CLIA- and CAP-accredited laboratory is located in San Diego, Calif. About Personalis, Inc. At Personalis, we are transforming the active management of cancer through breakthrough personalized testing. We aim to drive a new paradigm for cancer management, guiding care from biopsy through the life of the patient. Our highly sensitive assays combine tumor-and-normal profiling with proprietary algorithms to deliver advanced insights even as cancer evolves over time. Our products are designed to detect minimal residual disease (MRD) and recurrence at the earliest time points, enable the selection of targeted therapies based on ultra-comprehensive genomic profiling, and enhance biomarker strategy for drug development. Personalis is based in Fremont, California.

Read More