Stem cell models of human spine development unveiled

Scientists have created the first lab-dish models of the cellular clock, where each ‘tick’ stimulates the formation of the vertebra, which uses stem cells derived from adult human tissue. Over 20 years ago, Olivier Pourquié’s lab at Harvard University, US discovered a cellular clock in chicken embryos where each ‘tick’ stimulates the formation of a structure called a somite that ultimately becomes a vertebra. Now, Pourquié has led one of two teams to create the first lab-dish models of the segmentation clock that use stem cells derived from adult human tissue.

Spotlight

Spotlight

Related News

Medical

Zenfold Leverages Ginkgo Enzyme Services to Enable Veterinary Active Ingredient Development with Sustainable Biology

PR Newswire | October 17, 2023

Ginkgo Bioworks which is building the leading platform for cell programming and biosecurity, and Zenfold Sustainable Technologies, a company focused on developing and manufacturing specialty ingredients using sustainable technologies and precision fermentation, today announced a collaboration to leverage Ginkgo Enzyme Services in its effort to discover an enzyme critical to the manufacturing of veterinary products. This partnership aims to replace traditional chemical processes in veterinary active ingredient production with a sustainable biological method. "This collaboration marks a significant step forward in Zenfold's mission to bring sustainable manufacturing technology to the veterinary medicine industry," said Dr. BSV Prasad, CEO and Managing Director of Zenfold Sustainable Technologies. "By utilizing Ginkgo's expertise and innovation, we are well-positioned to develop a sustainable solution that will have a lasting impact on the Indian market and beyond." "We are excited to partner with Zenfold, which brings a powerful vision of sustainable biotechnology to veterinary active ingredient development. This collaboration will enable us to apply our state-of-the-art enzyme discovery module to enable more innovation in the veterinary medicine space," said Jennifer Wipf, SVP, Head of Commercial, Cell Engineering at Ginkgo. "The project involves creating a broad library of cDNA candidates from a metagenomic collection of billions of enzyme sequences. That's the kind of scale visionary projects like this need, and Ginkgo is committed to scaling up this solution for the betterment of animal health and the environment." About Ginkgo Bioworks Ginkgo Bioworks is the leading horizontal platform for cell programming, providing flexible, end-to-end services that solve challenges for organizations across diverse markets, from food and agriculture to pharmaceuticals to industrial and specialty chemicals. Ginkgo's biosecurity and public health unit, Concentric by Ginkgo, is building global infrastructure for biosecurity to empower governments, communities, and public health leaders to prevent, detect and respond to a wide variety of biological threats. About Zenfold Zenfold Sustainable Technologies is a pioneer in the field of sustainable biology, with a focus on veterinary actives and enzyme supply. This collaboration with Ginkgo Bioworks marks Zenfold's expansion into the global veterinary market and further emphasizes their commitment to environmental responsibility and innovative biological solutions.

Read More

Cell and Gene Therapy

Ceres Nanosciences and Ginkgo Bioworks Partner to Bring Pathogen Monitoring Capabilities to Labs Around the World

prnewswire | September 14, 2023

Ceres Nanosciences, a global leader in developing wastewater testing methods based on its Nanotrap® technology, and Ginkgo Bioworks which is building the leading platform for cell programming and biosecurity, today announced that they are partnering to bring pathogen monitoring capabilities to laboratories around the world. Pathogen monitoring and analysis capabilities, including in wastewater, are designed to help public health institutions address regional biosecurity challenges. Supported by the NIH RADx Initiative, Ceres developed their Nanotrap technology for robust, sensitive, and time-saving methods to detect a wide range of pathogens in wastewater samples and has deployed those methods to a network of testing sites in the United States. These sites provide wastewater testing services nationwide to deliver valuable public health data, such as information about the relative abundance of COVID-19 variant groups over time in a community's wastewater, to the CDC's National Wastewater Surveillance System and to state, local, and Tribal decision makers. Recently, Concentric by Ginkgo, the biosecurity unit of Ginkgo Bioworks, as part of a CDC program, demonstrated in a study with partners from XPresCheck and Louisiana State University that coupling Ceres' aircraft wastewater testing methods with Concentric's analysis can enable early detection of variants of SARS-CoV-2. San Francisco International Airport was the first airport to announce that it will continuously monitor airplane wastewater samples as part of a CDC program operated by Concentric and XpresCheck. Under the partnership between Ceres and Concentric, labs in countries where Concentric has biosecurity programs receive on-site training and the materials needed to implement the standardized and proven wastewater testing workflow from Ceres. Labs also receive biosecurity tools and data infrastructure to leverage automation, data analysis, bioinformatics capabilities, and other critical genomic sequencing technologies. Together, Ceres and Concentric have set up labs in the Middle East and Africa through this collaboration, offering a cutting-edge approach to biosurveillance technologies and capacity building for labs around the world that are part of Concentric's global pathogen monitoring network. "Under our NIH RADx Initiative, we demonstrated that we can quickly stand up improved wastewater testing capabilities for labs that are experts or novices in the space," said Robbie Barbero, Chief Business Officer at Ceres Nanosciences. "We are delighted now to be partnering with a global leader like Concentric to build a robust public health framework worldwide." "Ceres Nanosciences has been a terrific partner in developing effective and innovative methods for identifying pathogens in wastewater," said Matt McKnight, General Manager, Biosecurity at Ginkgo Bioworks. "By combining their laboratory expertise with our global footprint, we are building a robust global biological radar to prevent, detect, and respond to biological threats." About Ceres Nanosciences, Inc. Ceres Nanosciences is a privately held company, located in Northern Virginia, focused on incorporating its proprietary Nanotrap® particle technology into a range of diagnostic and research use products and workflows. Nanotrap particles capture, concentrate, and preserve low abundance analytes from biological samples, enabling early and accurate detection of diseases. The Nanotrap particle technology was developed with support from the National Institutes of Health, the Defense Advanced Research Projects Agency, the Bill and Melinda Gates Foundation, Schmidt Futures, the Defense Threat Reduction Agency, the Centers for Disease Control and Prevention, and the Commonwealth of Virginia. About Ginkgo Bioworks Ginkgo Bioworks is the leading horizontal platform for cell programming, providing flexible, end-to-end services that solve challenges for organizations across diverse markets, from food and agriculture to pharmaceuticals to industrial and specialty chemicals. Ginkgo's biosecurity and public health unit, Concentric by Ginkgo, is building global infrastructure for biosecurity to empower governments, communities, and public health leaders to prevent, detect and respond to a wide variety of biological threats.

Read More

Medical

Immunic Reports Positive Interim Data from Phase 2 CALLIPER Trial of Vidofludimus Calcium in Progressive Multiple Sclerosis

PR Newswire | October 10, 2023

Immunic, Inc. a biotechnology company developing a clinical pipeline of orally administered, small molecule therapies for chronic inflammatory and autoimmune diseases, today announced positive interim data from its phase 2 CALLIPER trial of nuclear receptor related 1 (Nurr1) activator, vidofludimus calcium (IMU-838), in patients with progressive multiple sclerosis (PMS). The Company believes that this data shows biomarker evidence that vidofludimus calcium's activity extends beyond the previously observed anti-inflammatory effects, thereby further reinforcing its neuroprotective potential. Serum NfL responses were consistently observed for vidofludimus calcium across progressive MS disease and all subpopulations. In the overall PMS population at 24 weeks (N=203), vidofludimus calcium was associated with a 6.7% reduction from baseline in serum NfL, compared to a 15.8% increase over baseline in placebo (p=0.01, post hoc). At 48 weeks (N=79), vidofludimus calcium reduced serum NfL by 10.4% from baseline, compared to a 6.4% increase in placebo. Substantial reductions were also seen across all PMS subtypes, as well as in patients that show or do not show disease and/or magnetic resonance imaging (MRI) activity. Although early, interim GFAP data also showed a promising signal: at 24 weeks (N=203), GFAP increased by 3.7% for vidofludimus calcium, and 4.4% for placebo. At 48 weeks (N=79), the change was only 2.7% for vidofludimus calcium, with a 6.4% increase for placebo. Progression of GFAP response is generally thought to evolve more slowly than NfL, and the Company believes that a longer follow-up may further strengthen this signal. "Serum NfL has been consistently shown to capture disease activity and to predict future disability in MS. Vidofludimus calcium shows a separation in serum NfL over placebo in this interim analysis, an effect also seen across different subgroups," stated Prof. Jens Kuhle, M.D., Ph.D., Senior Physician, Head of Neuroimmunology Unit and Multiple Sclerosis Centre, University Hospital Basel, Switzerland. "Particularly remarkable, the non-active progressive MS population, which represents the highest unmet medical need in MS, also showed differences in NfL levels over this relatively short observation period in favor of vidofludimus calcium. Meanwhile, although longer follow-up is needed, the GFAP data set also shows a potential promising early signal. Overall, the interim biomarker data further support vidofludimus calcium's possible activity beyond an anti-inflammatory effect, which may be related to its potent Nurr1 activation." "The clear separation observed in serum NfL for vidofludimus calcium over placebo in the PMS patient population represents another major step forward for, what potentially could be, a first-in-class Nurr1 activator for MS," commented Daniel Vitt, Ph.D., Chief Executive Officer and President of Immunic. "Although no head-to-head data is available, it is encouraging to see that vidofludimus calcium's improvement in NfL over placebo appears at least as good as, and is in fact numerically higher than that observed with historical studies of other therapeutic approaches for PMS. We believe that, if the top-line CALLIPER data, expected in April of 2025, continue to show a neuroprotective effect, we may be able to position vidofludimus calcium as the first oral treatment option for non-active SPMS. Additionally, the drug's first-in-class ability to activate Nurr1, a known neuroprotective target, should also significantly benefit our ongoing phase 3 ENSURE program in relapsing MS where prevention of disability progression independent of relapse activity (PIRA), serves as a key outcome." "We are very pleased to see such strong improvements in serum NfL for vidofludimus calcium over placebo in the overall PMS population of this interim analysis, as well as across all PMS subtypes and in patients with and without disease activity, and with and without MRI activity. We even saw evidence in non-active SPMS, a population where the medical need for new therapies is high as there is currently no relevant treatment available in the US," added Andreas Muehler, M.D., Chief Medical Officer of Immunic. "Finally, we were also excited to see an encouraging early signal with GFAP. This is a newer biomarker which is thought to evolve more slowly and with lower amplitude than NfL, and longer follow-up will hopefully allow us to see even stronger results." The Company believes that these results corroborate separate findings from its phase 2 EMPhASIS trial in relapsing-remitting multiple sclerosis (RRMS), where vidofludimus calcium was associated with a decrease in serum NfL at 24 weeks (-17.0% for 30 mg and -20.5% for 45 mg) as compared to baseline values, as contrasted with a 6.5% increase in serum NfL over baseline among placebo patients. CALLIPER is a multicenter, randomized, double-blind, placebo-controlled phase 2 trial which enrolled 467 patients with primary PMS or active or non-active secondary PMS at more than 70 sites throughout North America as well as Western, Central and Eastern Europe. Patients were randomized to either 45 mg daily doses of vidofludimus calcium or placebo, and the trial's primary endpoint is the annualized rate of percent brain volume change up to 120 weeks. Key secondary endpoints include the annualized rate of change in whole brain atrophy and time to 24-week confirmed disability progression based on the expanded disability status scale (EDSS). Anticipated MS Clinical Milestones Top-line data from the phase 2 CALLIPER trial of vidofludimus calcium in PMS is expected in April of 2025. Data from the interim analysis of the phase 3 ENSURE program of vidofludimus calcium in relapsing MS is expected in late 2024, with the top-line readout of the first of the ENSURE trials at the end of 2025. The interim data of the phase 2 CALLIPER trial of vidofludimus calcium in PMS will be filed on a Form 8-K and discussed during the management presentation to be held tomorrow at 8:00 am ET. The presentation will also be accessible on the "Events and Presentations" section of Immunic's website at: https://ir.imux.com/events-and-presentations. About Progressive Multiple Sclerosis Multiple sclerosis (MS) is an autoimmune disease that affects the brain, spinal cord and optic nerve. In MS, myelin, the coating that protects the nerves, is attacked and damaged by the immune system. Thus, MS is considered an immune-mediated demyelinating disease of the central nervous system. Progressive multiple sclerosis (PMS) includes both primary progressive MS (PPMS) and secondary progressive MS (SPMS). PPMS is characterized by steadily worsening neurologic function from the onset of symptoms without initial relapse or remissions. SPMS is identified following an initial relapsing-remitting course, after which the disease becomes more steadily progressive, with (active SPMS) or without (non-active SPMS) other disease activity present. About Vidofludimus Calcium (IMU-838) Vidofludimus calcium is a small molecule investigational drug in development as an oral next-generation treatment option for patients with multiple sclerosis and other chronic inflammatory and autoimmune diseases. The selective immune modulator activates the neuroprotective transcription factor nuclear receptor related 1 (Nurr1), which is associated with direct neuroprotective properties. Additionally, vidofludimus calcium is a known inhibitor of the enzyme dihydroorotate dehydrogenase (DHODH), which is a key enzyme in the metabolism of overactive immune cells and virus-infected cells. This mechanism is associated with the anti-inflammatory and anti-viral effects of vidofludimus calcium. Vidofludimus calcium has been observed to selectively act on hyperactive T and B cells while leaving other immune cells largely unaffected and enabling normal immune system function, e.g., in fighting infections. To date, vidofludimus calcium has been tested in more than 1,400 individuals and has shown an attractive pharmacokinetic, safety and tolerability profile. Vidofludimus calcium is not yet licensed or approved in any country. About Immunic, Inc. Immunic, Inc. is a biotechnology company developing a clinical pipeline of orally administered, small molecule therapies for chronic inflammatory and autoimmune diseases. The company's lead development program, vidofludimus calcium (IMU-838), is currently in phase 3 and phase 2 clinical trials for the treatment of relapsing and progressive multiple sclerosis, respectively, and has shown therapeutic activity in phase 2 clinical trials in patients suffering from relapsing-remitting multiple sclerosis and moderate-to-severe ulcerative colitis. Vidofludimus calcium combines neuroprotective effects, through its mechanism as a first-in-class nuclear receptor related 1 (Nurr1) activator, with additional anti-inflammatory and anti-viral effects, by selectively inhibiting the enzyme dihydroorotate dehydrogenase (DHODH). IMU-856, which targets the protein Sirtuin 6 (SIRT6), is intended to restore intestinal barrier function and regenerate bowel epithelium, which could potentially be applicable in numerous gastrointestinal diseases, such as celiac disease, where it is currently in preparations for a phase 2 clinical trial. IMU-381, which currently is in preclinical testing, is a next generation molecule being developed to specifically address the needs of gastrointestinal diseases.

Read More