Samsung Biologics, Vir Biotechnology team up to fight COVID-19

BioSpectrum Asia | April 13, 2020

South Korea based Samsung Biologics and US based Vir Biotechnology, Inc. have announced a manufacturing agreement under which Samsung Biologics will perform large scale manufacturing services Vir's SARS-CoV-2 monoclonal antibody (mAb) program. Vir's lead SRS-CoV-2 mAb development candidates, VIR-7831 and VIR-7832, have demonstrated high affinity for the SARS-CoV-2 spike protein and are highly potent in neutralizing SARS-CoV-2 in live-virus cellular assays. Vir plans to proceed directly into a phase 2 clinical trial within the next three to five months. This agreement builds on Vir's previously announced manufacturing agreement with WuXi Biologics and its letter of intent with Biogen, Inc. Under the deal valued at approximately $362 million, Samsung Biologics is expected to commence its manufacturing as early as October with the first engineering run, with potential commercial batches to be manufactured starting in 2021 in Plant 3. The parties will continue to negotiate additional terms in a definitive agreement and will use best efforts to execute a definitive agreement before July 31, 2020.

Spotlight

VIA Thaw™ dry automated thawers give you the confidence to reliably recover cryopreserved cellular products. VIA Thaw™ L1000  intended for research or manufacturing use only  is an automated dry thawer that you can use for controlled, consistent thawing of cellular products in cryobags.

Spotlight

VIA Thaw™ dry automated thawers give you the confidence to reliably recover cryopreserved cellular products. VIA Thaw™ L1000  intended for research or manufacturing use only  is an automated dry thawer that you can use for controlled, consistent thawing of cellular products in cryobags.

Related News

DIAGNOSTICS

PhenomeX Launches Beacon Quest™ Optofluidic System with Opto® T Cell Profiling Workflows

PRNewswire | June 06, 2023

PhenomeX Inc. the functional cell biology company, announced the launch of the Beacon Quest™ optofluidic system, with Opto® T Cell Profiling workflows for immunotherapy translational research and a platform price under $1 million USD, less than half of the higher-throughput Beacon system, enabling broader accessibility to the cutting-edge technology critical for next-generation precision medicine. The Opto T Cell Profiling workflows have enabled scientists to comprehensively profile single T cells to correlate polyfunctionality with cytotoxicity and recover those same cells for downstream analysis such as transcriptome and genome sequencing, revealing functional connections of phenotype with molecular mechanism. This depth of understanding of biology and response to therapeutics is not available on any other platform. Combined with the value-matched Beacon Quest system, more academic, non-profit, and government customers can now access the power of optofluidic and NanoPen® chamber technology and propriety single T Cell Profiling applications along with the optimum level of features to meet their research and budgetary needs. "At PhenomeX, we are excited to launch the Beacon Quest, as it supports our objective of offering scientists and researchers globally the ability to affordably access the main applications of the Beacon system, including antibody discovery, cell line development and single-cell functional multiomic T-cell profiling," said Siddhartha Kadia, Ph.D., chief executive officer of PhenomeX. "We look forward to partnering with and providing significant value in the academic research segments, particularly in immuno-oncology translational cancer centers and innovative cell and gene therapy development centers." Beacon Quest for T Cell Profiling Workflow Features Opto T Cell Profiling workflows on the Beacon Quest system enable multi-functional characterization of single T cells, including for development of efficacious immunotherapies and cell-based cancer therapeutics, that are ideally suited for academic, non-profit, and government customers. The Beacon Quest system enables a variety of assays to profile single T cells including detection of cytokine secretion, cytotoxicity, cell surface markers, transcriptome profiling and TCRSeq, with the potential to study growth characteristics and cell motility. The resulting analysis is used to identify cells with phenotypes of interest and guide recovery of the same cells for downstream assays, enabling researchers to gain a deeper understanding of the underlying biology by Investigating molecular mechanisms associated with polyfunctional T cells; Identifying desirable phenomes by correlating polyfunctionality with cytotoxicity; and Linking desirable phenotypes to T cell receptor sequences of the same cells. In addition to supporting the Opto T Cell Profiling workflows, Beacon Quest will enable customers to access the Opto B Discovery workflows and Opto Cell Line Development workflows. To further increase customer accessibility and affordability, PhenomeX will also offer reduced priced OptoSelect® chips (OptoSelect® Research chips) for Beacon Quest, helping academic customers accelerate the pace of scientific discovery for clinical research use applications. About PhenomeX Inc. PhenomeX is empowering scientists to leverage the full potential of each cell and drive the next era of functional cell biology that will advance human health. We enable scientists to reveal the most complete insights on cell function and obtain a full view of the behavior of each cell. Our unique suite of proven high-throughput tools and services offer unparalleled resolution and speed, accelerating the insights that are key to advancing discoveries that can profoundly improve the prevention and treatment of disease. Our award-winning platforms are used by researchers across the globe, including those at the top 15 global pharmaceutical companies and approximately 85% of leading U.S. comprehensive cancer centers.

Read More

MEDTECH, INDUSTRY OUTLOOK

Mission Bio Launches Tapestri v3 to Rapidly Accelerate Rare Cell Detection Applications for Translational Research and Precision Therapeutics

PRNewswire | June 01, 2023

Mission Bio, Inc., the pioneer in high-throughput single-cell DNA and multi-omics analysis, announced breakthrough improvements to the Tapestri® Platform and its core chemistry that enable highly confident detection of rare cells for a range of applications. With Tapestri® v3 chemistry, researchers can discover tiny numbers of single cells that, until now, easily escaped detection and influenced disease in invisible ways. At the same time, drug developers can use the new capabilities for a more complete understanding of their advanced therapies, potentially leading to safer, more effective medicines. The new Tapestri® v3 chemistry increases the number of cells captured per sample by up to four times compared to the prior chemistry, a notable enhancement. With enhanced cell capture, the Tapestri® Platform can more reliably detect rare cells, opening incredible new possibilities like improving the assessment of measurable residual disease (MRD), a key metric used increasingly in clinical settings to estimate the risk of relapse with certain cancers. In the case of MRD in hematological cancers, rare subclonal variants are commonly missed by bulk NGS due to its averaging effect, hindering the detection of relapse-driving clones that potentially offer new therapeutic targets. With Tapestri®'s expanded capabilities, new integrated multi-omics tools like the Tapestri® scMRD Assay for Acute Myeloid Leukemia (AML) will offer clinicians additional therapeutic insights, rather than providing a binary 'yes or no' answer to the presence of residual disease. A team of investigators from Memorial Sloan Kettering Cancer Center (MSK) using the assay has reported a high sensitivity of 0.01% limit of detection in data presented at Mission Bio's Tapestri® scMRD for AML Summit last year. Tapestri®'s new capabilities also hold promise for cell and gene therapy developers looking to improve quality assessment throughout the therapy development process. Powered by Tapestri® v3 chemistry, the increase in cell throughput means Tapestri® Genome Editing Solution can measure gene editing outcomes at single-cell resolution – even for very low-frequency events like translocations, which can have significant effects on the safety of the therapy. Tapestri® v3 is the latest example of Mission Bio's continued focus on customer-centric product and service development. The company has recently implemented additional quality control measurements including design and development, release, and documentation processes compliant with the ISO 9001 standard. "Our customers' success is at the forefront of our mind," said Adam Abate, PhD, Co-founder and Interim Chief Executive Officer of Mission Bio. "Researchers and drug developers are demanding ever-greater sensitivity and highly robust products to effectively progress their research or advanced therapeutic program, and we are committed to serving our customers and helping them achieve their goals." The new v3 reagents will be available for shipping starting in mid-June. About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others.

Read More

CELL AND GENE THERAPY, DIAGNOSTICS

Vertex and CRISPR Therapeutics Announce a Licensing Agreement to Hasten the Development of Hypoimmune Cell Therapies for Type 1 Diabetes

Businesswire | March 28, 2023

Vertex Pharmaceuticals Incorporated and CRISPR Therapeutics announced that they have entered into a new non-exclusive licensing agreement for the use of CRISPR Therapeutics’ gene editing technology, known as CRISPR/Cas9, to accelerate the development of Vertex’s hypoimmune cell therapies for type 1 diabetes (T1D). “We have multiple programs in our T1D portfolio including VX-880 and VX-264, which are in the clinic, as well as our hypoimmune program, in preclinical development,” said Bastiano Sanna, Ph.D., Executive Vice President and Chief of Cell and Genetic Therapies at Vertex. “Having successfully demonstrated clinical proof of concept in T1D in our VX-880 program, we are excited to deepen our relationship with CRISPR Therapeutics with this agreement, which will allow us to further accelerate our goal of generating fully differentiated, insulin-producing hypoimmune islet cells for T1D.” “We are pleased to expand our long and successful relationship with Vertex with this collaboration which fully leverages our gene editing platform to develop hypoimmune cell therapies for T1D,” said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. “In parallel, we continue to expand our capabilities in regenerative medicine and advance our existing allogeneic gene-edited cell therapy programs.” Under this agreement, Vertex will pay CRISPR Therapeutics $100 million up-front for non-exclusive rights to CRISPR Therapeutics’ technology for the development of hypoimmune gene-edited cell therapies for T1D. CRISPR Therapeutics will be eligible for up to an additional $230 million in research and development milestones and receive royalties on any future products resulting from this agreement. CRISPR and ViaCyte, Inc., which was acquired by Vertex in 2022, will continue to collaborate on their existing gene-edited allogeneic stem cell therapies, using ViaCyte cells, for the treatment of diabetes under the terms of their collaboration. A Phase 1/2 study of VCTX211, an allogeneic, gene-edited, stem cell-derived product candidate for T1D, which originated under the CRISPR Therapeutics and ViaCyte collaboration, has been initiated and is ongoing. CRISPR Therapeutics will not obtain any interest in Vertex’s pre-existing pipeline of T1D products, including VX-880 and VX-264. About Vertex Vertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) — a rare, life-threatening genetic disease — and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust clinical pipeline of investigational small molecule, cell and genetic therapies in other serious diseases where it has deep insight into causal human biology, including sickle cell disease, beta thalassemia, APOL1-mediated kidney disease, pain, type 1 diabetes, and alpha-1 antitrypsin deficiency. Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 13 consecutive years on Science magazine's Top Employers list and one of Fortune’s Best Workplaces in Biotechnology and Pharmaceuticals and Best Workplaces for Women.

Read More