Researchers identify potential new combination treatment for pancreatic cancer

Medical Xpress | March 20, 2019

Researchers from UCLA's Jonsson Comprehensive Cancer Center have identified a possible new therapeutic strategy using two types of drug inhibitors at once to treat one of the world's deadliest cancers. The combination approach uses one drug that inhibits the process—known as lysosome—that allows cancer cells to recycle essential nutrients to survive, and another drug that blocks the pathway used to repair DNA. Researchers found the approach to be promising after testing it on pancreatic cancer cells and mice in the laboratory. Pancreatic cancer, which is the third leading cause of cancer-related deaths in the United States, is known to be highly resistant to treatments. The lack of effective treatments also suggests there is an inadequate understanding of the biologic complexity of the disease and the mechanisms to explain why this type of cancer often becomes resistant to therapies that work in treating other types of cancers. Because of these limitations, researchers have sought to better understand how the cancer cell pathways work to help identify potential new targets for therapies. Pancreatic cancer cells rely on lysosome-dependent pathways, which are an essential component of autophagy, where cancer cells break down and recycle some of their own components for fuel. Understanding the underlying mechanism and impact of inhibiting this pathway can lead to new treatment strategies for the disease.

Spotlight

Meet the NeatCell C-Pro application. It automates the mononuclear cell fraction enrichment from diverse cellular products, and is designed for use with a density-gradient medium like Ficoll-Paque media with the Sepax C-Pro instrument and CT-90.1 single-use kit.

Spotlight

Meet the NeatCell C-Pro application. It automates the mononuclear cell fraction enrichment from diverse cellular products, and is designed for use with a density-gradient medium like Ficoll-Paque media with the Sepax C-Pro instrument and CT-90.1 single-use kit.

Related News

MEDTECH, INDUSTRIAL IMPACT

argenx and Genmab Enter Partnership to Advance Antibody Therapies in Immunology and Oncology

Globenewswire | April 18, 2023

argenx SE and Genmab A/S announced that argenx and Genmab have entered into a collaboration agreement to jointly discover, develop and commercialize novel therapeutic antibodies with applications in immunology, as well as in oncology therapeutic areas. The multiyear collaboration will leverage the antibody engineering expertise and knowledge of disease biology of both companies to accelerate the identification and development of novel antibody therapeutic candidates with a goal to address unmet patient needs in immunology and cancer. “Our core mission is to innovate on behalf of patients by translating immunology breakthroughs into novel pipeline candidates. We do this through a model of co-creation which has led to eight molecules demonstrating human proof-of-concept in our pipeline,” said Tim Van Hauwermeiren, Chief Executive Officer, argenx. “Through our collaboration with Genmab, we are bringing together our combined antibody discovery, development and commercialization expertise to unlock insights on the disease pathways that we will address. This allows us to broaden our capabilities and maximize the opportunity to generate novel therapeutic antibodies within autoimmunity or cancer.” “Genmab is entering the therapeutic area of immunology and inflammation as a steppingstone to achieving its vision that by 2030, our knock-your-socks-off “KYSO” antibody medicines will be transforming the lives of people with cancer and other serious diseases,” said Jan van de Winkel, Ph.D., Chief Executive Officer, Genmab. “By partnering with argenx, we will be able to combine our deep knowledge of the biology and therapeutic power of antibodies and have an opportunity to address patients’ needs in oncology as well as in immunology and inflammation.” About argenx argenx is a global immunology company committed to improving the lives of people suffering from severe autoimmune diseases. Partnering with leading academic researchers through its Immunology Innovation Program (IIP), argenx aims to translate immunology breakthroughs into a world-class portfolio of novel antibody-based medicines. argenx developed and is commercializing the first-and-only approved neonatal Fc receptor (FcRn) blocker in the U.S., the EU and UK, and Japan. The Company is evaluating efgartigimod in multiple serious autoimmune diseases and advancing several earlier stage experimental medicines within its therapeutic franchises.

Read More

MEDICAL

Cellectis Presents Clinical Data on AMELI-01 and Preclinical Data on Multiplex Engineering for Superior Generation of CAR T-cells at ASGCT 2023

Globenewswire | May 18, 2023

Cellectis a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies, today presents clinical data on its Phase 1 AMELI-01 clinical trial (evaluating UCART123) that were unveiled in an oral presentation at the 64th American Society of Hematology (ASH) annual meeting, as well as preclinical data on multiplex engineering for superior generation of CAR T-cells, at the American Society of Gene and Cell Therapy (ASGCT) 2023 Annual Meeting. Preliminary Clinical Data from the AMELI-01 Study Presented at ASH 2022 AMELI-01 is a Phase 1 open-label dose-escalation trial evaluating the safety, tolerability, expansion and preliminary activity of UCART123 given at escalating dose levels after lymphodepletion (LD) with either fludarabine and cyclophosphamide (FC) or FC with alemtuzumab (FCA) in patients with relapsed or refractory acute myeloid leukemia (r/r AML). The oral presentation reviewed preliminary data from patients who received UCART123 at one of the following dose levels: dose level 1 (DL1) 2.5x105 cells/kg; dose level 2 (DL2) 6.25x105 cells/kg; intermediate dose level 2 (DL2i) 1.5x106 cells/kg; or dose level 3 (DL3) 3.30x106 cells/kg after lymphodepletion with FC ([n=8], DL1 – DL3) or FCA ([n=9], DL2 & DL2i). Preliminary Safety Data The FCA LD regimen resulted in robust lymphodepletion for greater than 28 days in all patients. Seven out of nine patients demonstrated UCART123 expansion, with maximum concentration (Cmax) ranging from 13,177 to 330,530 copies/μg DNA, an almost nine-fold increase compared with FC LD, and a significant increase in area under the curve (AUC) (0-28 days) (p=0.04; FC 10.2 vs. FCA 34.9). Cytokine release syndrome (CRS) occurred in eight patients in the FC arm and nine patients in the FCA arm. In the FC arm, one patient experienced Grade 3 immune effector cell-associated neurotoxicity syndrome (ICANS) and two patients experienced Grade 4 protocol-defined dose limiting toxicities (DLTs) secondary to CRS. In the FCA arm, two patients experienced Grade 5 DLTs secondary to CRS. Patient Enrollment in a 2-Dose Regimen Arm Overall, these preliminary data support the continued administration of UCART123 after FCA lymphodepletion in patients with r/r AML. Based on observed UCART123 expansion patterns and cytokine profiles, pursuant to an amended protocol, a second dose of UCART123 is given after 10-14 days to allow for additional UCART123 expansion and clinical activity without the use of additional lymphodepletion. The UCART123 cell expansion from the second dose of UCART123, in the setting of reduced disease burden, is expected to be safe and allow for clearance of residual disease. About Cellectis Cellectis is a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies. Cellectis utilizes an allogeneic approach for CAR-T immunotherapies in oncology, pioneering the concept of off-the-shelf and ready-to-use gene-edited CAR T-cells to treat cancer patients, and a platform to make therapeutic gene editing in hemopoietic stem cells for various diseases. As a clinical-stage biopharmaceutical company with over 23 years of experience and expertise in gene editing, Cellectis is developing life-changing product candidates utilizing TALEN®, its gene editing technology, and PulseAgile, its pioneering electroporation system to harness the power of the immune system in order to treat diseases with unmet medical needs. Cellectis’ headquarters are in Paris, France, with locations in New York, New York and Raleigh, North Carolina. Cellectis is listed on the Nasdaq Global Market and on Euronext Growth .

Read More

CELL AND GENE THERAPY, INDUSTRIAL IMPACT

Fulgent Genetics Launches Mission Bio Platform to Broaden Accessibility of Single-Cell Multi-Omics for Drug Development and Clinical Research

Prnewswire | April 12, 2023

Mission Bio, Inc., the pioneer in high-throughput single-cell DNA and multi-omics analysis, announced that it has entered into an agreement with Fulgent Genetics a technology-based company with a well-established clinical diagnostic business and a therapeutic development business. Fulgent Genetics is now able to offer single-cell multi-omics on the Tapestri Platform on its fully customizable menu of services, including whole genome, whole exome, RNA sequencing, tumor profiling, methylation sequencing, liquid biopsy, single cell sequencing, spatial biology, and pathology services to support its growing pharma client demands. Additionally, Fulgent Genetics will evaluate the Tapestri Platform for applications in clinical development to streamline the drug development and approval process. Over the last ten to fifteen years, there has been a paradigm shift in clinical trials towards precision oncology by using biomarkers to select or enrich trial cohorts. The Tapestri Platform's ability to do single-cell analysis of genotype and phenotype from the same cell can provide the sensitivity and resolution for biomarker discovery unattainable by current bulk methods. Single-cell resolution can reveal treatment resistance mechanisms that may help to better stratify patients in clinical trials. While on treatment, residual levels of disease can be detected with the high sensitivity of single-cell analysis. Characterizing clonal heterogeneity and tracking clonal evolution during treatment can potentially guide adaptive and rational combination therapies for better patient stratification and better clinical trial outcomes. "The increasing adoption of the Tapestri Platform for translational research and clinical development by many cancer centers and global pharma companies demonstrates the necessity of single-cell multi-omics," said Dr. Hanlin (Harry) Gao M.D., Ph.D., D.A.B.M.G., F.A.C.M.G., Chief Scientific Officer of Fulgent Genetics. "The relationship between Fulgent Genetics and Mission Bio will make it easier and faster for biopharmaceutical customers to generate data for more precise clinical trials." "Fulgent Genetics' full scope, end-to-end service and comprehensive genomic portfolio is the perfect one-stop shop for pharma customers," said Todd Druley, M.D., Ph.D., Chief Medical Officer of Mission Bio. "While some pharma customers can and still do partner with us through our internal Pharma Assay Development (PAD) services, this agreement provides another option for them to leverage the single-cell multi-omics expertise and full suite of solutions offered by Fulgent Genetics, particularly as they complete the validation of the Tapestri Platform in their CAP CLIA lab in the near future." Customers today have access to the Tapestri Platform and its full breadth of single-cell multi-omics and scMRD assays through Fulgent Genetics' labs. About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. The company's Tapestri Platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution.

Read More