Researchers discover common markers of tumor hypoxia across 19 cancer types

Medical Xpress | January 14, 2019

Unlike healthy tissues, tumours thrive in low-oxygen environments, often acquiring the ability to resist treatment and spread to other sites in the body. Despite being a well-known cause of therapy resistance and metastasis, the impact of low oxygen, known as hypoxia, on tumour cells is poorly understood. As reported today in Nature Genetics, researchers have discovered molecular hallmarks of hypoxia in the first-ever pan-cancer analysis of low oxygen in human tumours, with a special focus on prostate cancer.
The study investigated more than 8,000 human tumours across 19 different cancer types, including prostate tumours from the Canadian Prostate Cancer Genome Network (CPC-GENE). The authors discovered common markers of hypoxia that could help predict cancer aggressiveness and inform treatment decisions. These findings, which include several genes more commonly mutated in hypoxic cancers and new information about hypoxia-related patterns of tumour evolution, make up the largest resource available for hypoxia research.

Spotlight

Download this in-depth white paper on the effect of geographic breadth on enrollment in clinical trials of five high-interest diseases and how location, as well as the total number of countries, included affecting successful targeting of the right markets and patient populations.

Spotlight

Download this in-depth white paper on the effect of geographic breadth on enrollment in clinical trials of five high-interest diseases and how location, as well as the total number of countries, included affecting successful targeting of the right markets and patient populations.

Related News

INDUSTRIAL IMPACT

Bicycle Therapeutics Announces Expansion of Genentech Immuno-Oncology Collaboration

Bicycle Therapeutics | October 26, 2021

Bicycle Therapeutics plc a biotechnology company pioneering a new and differentiated class of therapeutics based on its proprietary bicyclic peptide (Bicycle®) technology, today announced that Genentech, a member of the Roche Group, has exercised an option to initiate a new program, expanding the exclusive strategic collaboration agreement with Bicycle to discover, develop and commercialize novel Bicycle®-based immuno-oncology therapies. Bicycle and Genentech are collaborating on the discovery and pre-clinical development of novel Bicycle-based immunotherapies against multiple targets. Pursuant to the terms of the February 2020 agreement, Genentech has exercised an option to include a new program under the agreement, triggering a $10 million payment to Bicycle. None of the compounds in Bicycle’s wholly owned oncology pipeline, including its immuno-oncology candidates, are included in the collaboration. “We are pleased both with the progress achieved so far in our ongoing work with Genentech and that Genentech has elected to exercise an option to add a new program under the collaboration. We believe the expansion of our collaboration underscores the potential utility of Bicycles compared to other modalities, as well as the potential broad applicability of Bicycles in a wide-range of targets “We look forward to continuing to work closely with the preeminent immuno-oncology team at Genentech to develop potential new cancer treatments based on Bicycles.” Kevin Lee, Ph.D., Chief Executive Officer of Bicycle Therapeutics About Bicycle Therapeutics Bicycle Therapeutics (NASDAQ: BCYC) is a clinical-stage biopharmaceutical company developing a novel class of medicines, referred to as Bicycles, for diseases that are underserved by existing therapeutics. Bicycles are fully synthetic short peptides constrained with small molecule scaffolds to form two loops that stabilize their structural geometry. This constraint facilitates target binding with high affinity and selectivity, making Bicycles attractive candidates for drug development. Bicycle is evaluating BT5528, a second-generation Bicycle Toxin Conjugate (BTC™) targeting EphA2, and BT8009, a second-generation BTC™ targeting Nectin-4, a well-validated tumor antigen, in company-sponsored Phase I/II trials. In addition, BT1718, a BTC™ that targets MT1-MMP, is being investigated in an ongoing Phase I/IIa clinical trial sponsored by the Centre for Drug Development of Cancer Research UK. Bicycle is headquartered in Cambridge, UK, with many key functions and members of its leadership team located in Lexington, MA. For more information, visit bicycletherapeutics.com. Forward Looking Statements This press release may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as “aims,” “anticipates,” “believes,” “could,” “estimates,” “expects,” “forecasts,” “goal,” “intends,” “may,” “plans,” “possible,” “potential,” “seeks,” “will” and variations of these words or similar expressions that are intended to identify forward-looking statements, although not all forward-looking statements contain these words. Forward-looking statements in this press release include, but are not limited to, statements regarding Bicycle’s collaboration with Genentech; the discovery, development and potential commercialization of potential product candidates using Bicycle’s technology and under the collaboration agreement; the therapeutic potential for Bicycles in immuno-oncology and other applications; and the potential to receive milestone payments and royalties under the strategic collaboration agreement. Bicycle may not actually achieve the plans, intentions or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: the risk that Bicycle may not realize the intended benefits of its technology or of the collaboration agreement with Genentech, including that Bicycle and Genentech may not successfully identify, develop and commercialize additional product candidates; the risk that Bicycle may not be able to maintain its collaboration with Genentech and realize the benefits thereof; and other important factors, any of which could cause Bicycle’s actual results to differ from those contained in the forward-looking statements, are described in greater detail in the section entitled “Risk Factors” in Bicycle’s Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission (SEC) on August 5, 2021, as well as in other filings Bicycle may make with the SEC in the future. Any forward-looking statements contained in this press release speak only as of the date hereof, and Bicycle expressly disclaims any obligation to update any forward-looking statements contained herein, whether because of any new information, future events, changed circumstances or otherwise, except as otherwise required by law.

Read More

MEDICAL

CellCarta expands it proteomics portfolio with the acquisition of next-generation immuno-MRM assays from Precision Assays

CellCarta | May 23, 2022

CellCarta, a leading global provider of precision medicine laboratory services, announced today the acquisition of the commercial rights to the antibody panels and assays from Precision Assays, a leader in next-generation targeted proteomics testing solutions. A spin-off from Fred Hutchinson Cancer Center ("Fred Hutch"), Precision Assays develops and deploys high-end multiplex quantitative immuno-MRM mass spectrophotometry-based assays for its pharmaceutical and biotech industry clients. The acquisition from Precision Assays of its large spectrum of targeted mass spectrometry assays characterized according to the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) Tier 2 guidelines greatly expands CellCarta's capabilities in off-the-shelf multiplex protein quantification offerings ready for deployment in immuno-oncology clinical and pre-clinical studies. Precision Assays' large portfolio of robust assays characterized according to CPTAC guidelines and its established proof of concept data will enable CellCarta to confidently support its clients' exploratory studies and therapeutic development strategies, offering them key solutions to address important clinical challenges and move their immuno-oncology programs forward. Given CellCarta's expertise in protein quantitation, these immuno-MRM panels can further be validated to support secondary and primary clinical endpoints." Lorella Di Donato, Chief Operating Officer of CellCarta, Immunology and Proteomics Divisions. Based on technology licensed from Fred Hutch, Precision Assays' platform is uniquely positioned to fully capture the unique advantages of multiplex protein quantification using targeted mass spectrometry. Founder Dr. Amanda Paulovich, a professor in the Clinical Research Division at Fred Hutch who holds the Aven Foundation Endowed Chair, is an internationally recognized pioneer in targeted mass spectrometry and a clinically trained oncologist. Dr. Paulovich has set best-in-class standards to support precision medicine studies in cancer-specific protein expression analysis in a variety of matrices from FFPE cancer tissue biopsies to clinical serum-based samples. Precision Assays is one of the few CROs to offer large and immuno-oncology relevant multiplex off-the-shelf panels and is at the forefront of targeted-mass spec proteomics-based research. As a global CRO with expertise in targeted mass spectrometry and specializing in biomarker testing to support precision medicine, CellCarta is an ideal partner to deploy and industrialize our platform to support discovery, translational and clinical research, especially in precision medicine and immuno-oncology." Paulovich About CellCarta CellCarta is a leading provider of specialized precision medicine laboratory services to the biopharmaceutical industry. Leveraging its integrated analytical platforms in immunology, histopathology, proteomics and genomics, as well as related specimen collection and logistics services, CellCarta supports the entire drug development cycle, from discovery to late-stage clinical trials. The company operates globally with 11 facilities located in Canada, USA, Belgium, Australia, and China.

Read More

Ginkgo Bioworks Announces Partnership with Totient to Identify Neutralizing Antibodies Against COVID-19

Ginkgo Bioworks | September 11, 2020

Today, Ginkgo Bioworks announced a partnership with Totient, an AI-driven drug discovery company emerging from stealth, to rapidly identify neutralizing antibodies against COVID-19. Through this partnership, Totient will leverage Ginkgo's bioengineering platform to express and screen thousands of antibody candidates with the aim of identifying broadly neutralizing therapeutic antibodies against COVID-19 for further development. Totient leverages tertiary lymphoid structures (TLSs) to identify novel tissue-specific antigens and develop matching high-affinity antibody therapeutics. As the broader scientific community mobilizes to address the coronavirus pandemic, Totient has partnered with Ginkgo to adapt and scale its platform, which has been validated in oncology and autoimmunity, to aid in the effort to discover COVID-19 antibodies. Totient's population-scale antibody discovery platform reconstructs anti-SARS-CoV-2 antibodies from bronchoalveolar lavage fluid (BALF) samples.

Read More