Quench Bio emerges with $50M to treat severe inflammatory diseases

Labiotech.eu | January 27, 2020

Most treatments for inflammatory diseases have single targets, such as an inflammation-promoting cytokine or a protein complex called an inflammasome. Quench Bio is taking aim at a family of proteins involved in inflammatory cell death—and it’s picked up $50 million to do so. Seeded by Atlas Venture and Arix Bioscience and incubated at Atlas since its inception in 2018, Quench's first target is gasdermin D, the best understood member of the gasdermin family of proteins. With its $50 million in series A cash, the company expects to fund three years’ worth of research as well as come up with its first clinical candidate, CEO Samantha Truex told FierceBiotech. It also hopes to screen for drug candidates that inhibit other members of the gasdermin family.

Spotlight

Did you know that you can change what lives in your gut? The gut microbiome consists of the community of trillions of bacteria living in the digestive tract. In fact, 80% of your immune system is in your microbiome, which affects just about every process, including digestion, thinking clearly and maintaining a healthy weight.

Spotlight

Did you know that you can change what lives in your gut? The gut microbiome consists of the community of trillions of bacteria living in the digestive tract. In fact, 80% of your immune system is in your microbiome, which affects just about every process, including digestion, thinking clearly and maintaining a healthy weight.

Related News

CELL AND GENE THERAPY

Cellares and Poseida Therapeutics Join Forces to Speed Up Cell Therapy Manufacturing

Cellares Corporation | July 16, 2021

Cellares Corporation, a life sciences technology company that has pioneered a revolutionary automated approach to cell therapy manufacturing announced today that Poseida Therapeutics, Inc., a clinical-stage biopharmaceutical company that uses proprietary genetic engineering platform technologies to create cell and gene therapeutics with the potential to cure, has joined its Early Access Partnership Program (EAPP). Poseida joins PACT Pharma and academic partner Fred Hutchinson Cancer Research Center as the third entity to join Cellares' EAPP. Cellares launched the EAPP in 2020 to provide participants awareness and early access to Cellares' Cell Shuttle, a next-generation cell therapy manufacturing platform that enables closed, automated, and scalable cell therapy production. Poseida's involvement in the initiative adds to the Cell Shuttle's development, range of usage, and applicability by providing insight and experience in manufacturing processes for various autologous and allogeneic cell therapies. Poseida is presently testing two autologous CAR-T product candidates in the clinic: P-BCMA-101 for relapsed/refractory multiple myeloma and P-PSMA-101 for metastatic castrate-resistant prostate cancer. The firm, which completed an initial public offering in July 2020, is also developing off-the-shelf versions of these treatments and TCR-T, anti-c-kit CAR-T, induced pluripotent stem cells (iPSCs), genetically modified hematopoietic stem cells (HSCs), and NK cells. In addition, Carl June, M.D., an immunotherapy pioneer and renowned oncologist who advised Cellares on creating the Cell Shuttle has just joined Poseida's Immuno-Oncology Scientific Advisory Board. Poseida will assess the Cell Shuttle prototypes and give statistics and written comments related to their function and performance as part of Cellares' EAPP. In addition, user studies will be conducted to assess the Cell Shuttle's hardware and software, product requirements, release criteria, and process processes to ensure product-market fit. About The Cell Shuttle The Cell Shuttle is a flexible and scalable automated and closed end-to-end production solution that allows clients to execute the precise procedures required for their cell therapy. Compared to presently existing cell therapy manufacturing methods, this next-generation platform allows for a threefold decrease in process failure rates and the ability to produce 10+ patient doses in parallel, improving manufacturing scalability by order of magnitude. For most processes, this will reduce per-patient manufacturing costs by up to 70%. About Cellares Corporation Cellares is rethinking cell therapy manufacturing and accelerating access to life-saving cell therapies. The business is working on a one-of-a-kind approach to solving the difficulties of generating cell therapies that are cheaper and broadly accessible to people in need. Cellares' proprietary platform, the Cell Shuttle, eliminates the need for biopharma companies, academic research centers, and CDMOs to choose between a manufacturing platform that is semi-automated but lacks workflow flexibility or one that provides customization but lacks the end-to-end automation required to manufacture at scale. The business is based in South San Francisco, California.

Read More

CELL AND GENE THERAPY

Y-Biologics and Pierre Fabre Announces Strategic Partnership in the Field of Immuno-Oncology Research

Y-Biologics | November 23, 2020

The South Korean biotech organization Y-Biologics and the French pharmaceutical group Pierre Fabre have declared their arrangements to frame a key association in the field of immuno-oncology research. The choice has been recognized through a letter of aim endorsed by the two players and will be affirmed in the coming a very long time through an itemized arrangement. The joint effort is set to run for a very long time, with the chance of a two-year expansion. Y-Biologics, which spends significant time in the revelation of monoclonal antibodies, and the Pierre Fabre gathering, France's second-biggest private drug lab, plan to join their subject matters with the point of recognizing and creating novel restorative monoclonal antibodies focusing on key immunosuppressive mechanisms activated within solid tumors.

Read More

INDUSTRIAL IMPACT

Kane Biotech Announces New Collaboration Agreements for Prosthetic Joint Infection, expanding its DispersinB® applications

Kane Biotech Inc. | February 11, 2022

Kane Biotech Inc. announces that it has signed collaboration agreements with Dr. James Doub, MD, Assistant Professor of Medicine, University of Maryland School of Medicine’s Institute of Human Virology, and the University of Texas Medical Branch (UTMB) to study the use of DispersinB® with Prosthetic Joint Infection (PJI) patients. The group is securing funding from the National Institutes of Health (NIH) for pre-clinical work to be done by Josh Wenke, a Professor in the Department of Orthopedic Surgery and Rehabilitation at UTMB. PJI’s are one of the most serious complications of joint replacement surgery. Conservative estimates are that approximately 1–2% of all prostheses will become infected over the life of the implant [1]. The financial burden of treating these infections is staggering. It is estimated that they will cost the US healthcare system $1.62 billion in 2020 [1]. In addition, patients have significant morbidity and mortality as a direct result of our current medical and surgical management to treat these infections [2]. In one study, the five-year mortality for prosthetic joint infections is over 20% [2]. “These collaborations are of utmost importance given our shared strategies for managing complex musculoskeletal infections and finding cures for the debilitating morbidity associated with PJI. We are highly optimistic of advancing this field scientifically and clinically for the benefit of patients across the globe” Marc Edwards, CEO of Kane Biotech “The Institute of Human Virology has been testing the use of bacteriophage therapeutics in treating recalcitrant PJIs with some early signals of success,” explained Dr. Doub, who is also Director of Infectious Diseases Ambulatory Practice at the University of Maryland Medicine Center. “However, DispersinB®, has properties that bacteriophages do not have which include superior application as a preventative therapeutic, broader spectrum of activity, and a much easier regulatory (FDA) path.” Dr. Doub is a consultant for Kane Biotech. Dr. Nanda Yakandawala, Vice President of Research and Development at Kane, in collaboration with Dr. Doub and Josh Wenke, Ph. D, recently submitted a R-21 grant application to NIH to fund pre-clinical work to be performed by Dr. Wenke. About University of Texas Medical Department Established in 1891 as the University of Texas Medical Department, UTMB was the nation's first public medical school and hospital under unified leadership and has evolved into a modern academic health science center with multiple campus locations and almost 1,000 faculty members educating approximately 3,500 students. Since the beginning, UTMB has been at the forefront of medical research, with researchers studying the viruses common to a sub-tropical island climate. Today, our world-renowned investigators generate a portfolio exceeding $160 million, and work in state-of-the-art laboratories developing diagnostic tools, cures and vaccines to benefit the global community. About Kane Biotech Kane Biotech is a biotechnology company engaged in the research, development, and commercialization of technologies and products that prevent and remove microbial biofilms. The company has a portfolio of biotechnologies, intellectual property (81 patents and patents pending, trade secrets, and trademarks) and products developed by the company's own biofilm research expertise and acquired from leading research institutions. StrixNB™, DispersinB®, Aledex™, bluestem™, bluestem®, silkstem™, goldstem™, coactiv+™, coactiv+®, DermaKB™ and DermaKB Biofilm™ are trademarks of Kane Biotech Inc.

Read More