CELL AND GENE THERAPY

PacBio Acquires Omniome, a DNA Sequencing Startup, for up to $800 Million

PacBio | July 26, 2021

Pacific Biosciences has had no trouble growing its business on its own in the year and a half since its acquisition by Illumina was blocked by the Federal Trade Commission due to concerns that the combination would establish a monopoly in DNA sequencing.

Earlier this year, the sequencer manufacturer received a staggering $900 million investment from SoftBank—a commitment almost as large as the $1.2 billion promised by Illumina for the planned acquisition.

PacBio is now making its acquisition, setting out a deal for up to $800 million to acquire Omniome, another provider of DNA sequencing technology.

The majority of the transaction is comprised of planned upfront payments totaling about $600 million. This will be paid out in $300 million in cash and 9.4 million shares of PacBio common stock. The additional $200 million will come from milestone payments made when Omniome meets certain specified objectives, which will also be paid in a mix of cash and shares.

PacBio has committed a small number of its current investors to a private issue of common stock to fund the acquisition. The total gross proceeds from this deal are expected to be about $300 million. Casdin Capital, SoftBank subsidiary SB Northstar LP, and T. Rowe Price Associates are among the investors who will buy approximately 11.2 million shares of PacBio stock for $26.75 per share, which is slightly less than the stock's closing price on the last full day of trading before the buyout was announced.

PacBio will be able to extend the capabilities of its single-molecule, real-time sequencing technology, or SMRT Sequencing, for use by its clients in biomedical and infectious disease research, as well as therapeutic and diagnostic development, after the transaction is completed.

PacBio's technology is based on long-read sequencing, which analyzes long strands of DNA at a time and can detect larger genomic variants and structural changes than short-read methods—though long-read sequencing has a higher potential error rate in those readings.

Meanwhile, Omniome has created its short-read technology that concentrates on the proteins that bind to DNA to generate what it claims are more accurate analyses than existing short-read sequencers.

Combining the two technologies is reminiscent of Illumina's planned acquisition of PacBio, which would have merged the latter's long-read technology with Illumina's short-read sequencing.

The merger is a significant boost for Omniome, which has attracted several life sciences, investors since its inception in 2013. Each of its most two funding rounds—a series B in mid-2018 and a series C in early 2020—raised $60 million, bringing the San Diego-based startup's total funding to over $130 million.

Spotlight

Through the programme, you will gain fundamental knowledge of biochemistry, microbiology, molecular biology, and process technology. You will learn to apply this knowledge to biotechnological problems, ranging from basic research issues to the development of new cell factories and the study of their behaviour in bioreactors. You will acquire the relevant competencies for collecting and analysing wide-ranging data, for instance by using statistics, bioinformatics, and mathematical models.

Spotlight

Through the programme, you will gain fundamental knowledge of biochemistry, microbiology, molecular biology, and process technology. You will learn to apply this knowledge to biotechnological problems, ranging from basic research issues to the development of new cell factories and the study of their behaviour in bioreactors. You will acquire the relevant competencies for collecting and analysing wide-ranging data, for instance by using statistics, bioinformatics, and mathematical models.

Related News

CELL AND GENE THERAPY

Sphere Fluidics Closes a $40 Million Funding Round Led by Sofinnova Partners and Redmile Group

Sphere Fluidics | October 29, 2021

Sphere Fluidics, a company that has developed and is commercialising single cell analysis systems underpinned by its proprietary picodroplet technology, announced today that it has closed a $40 million investment round. The round was led by Sofinnova Partner and Redmile Group investing on equal terms. Sphere Fluidics will use the funding to enable the expansion of the Company’s international sales activities in key markets and improving its support for customers. Furthermore, it will expand its product research and development programs, including novel applications for its proprietary Cyto-Mine® Single Cell Analysis System. The Cyto-Mine is an automated cost-effective platform which integrates single cell screening, sorting, dispensing, imaging, and clone verification and has been purchased by an international customer base including global pharmaceutical companies, biotech, CDMOs, and leading research institutions. The platform can process millions of samples per day, assessing and isolating rare or valuable cell variants or biological products, to simplify and improve throughput across antibody discovery, cell line development and single cell diagnostics. The funds raised will support ongoing commercialization, broadening the technology’s adoption into new, innovative research areas such as cell therapy, synthetic biology and genome editing, in addition to ongoing enhancements of the platform’s capabilities and performance. In conjunction with the financing, Sofinnova’s Tom Burt and Redmile Group’s Rob Faulkner will join the Board. “This is a transformational investment from two of the most respected specialist investment funds in the industry and a recognition of the untapped potential of the pioneering product and market development carried out by the Company to date. Andrew Mackintosh, Chairman of Sphere Fluidics Frank Craig, CEO, Sphere Fluidics, commented: “This funding round is not only testament to the potential of Sphere Fluidics’ single cell analysis technology, but also to the expertise of our team. The investment will underpin our growth strategy, enabling us to expand both our product range and our support to new and existing customers, globally. Tom Burt, Partner, Sofinnova Partners, commented: “We remain impressed by Cyto-Mine’s high-throughput, ease-of-use and accessible cost. In the growing markets of monoclonal antibody discovery, cell line development and cell therapy, we see a significant need for such an affordable and reliable single cell analysis system as Cyto-Mine, capable of performing multiple assays on tens of millions of individual cells per run.”

Read More

CELL AND GENE THERAPY

AbbVie and Caribou Biosciences Announce Collaboration and License Agreement for the Research and Development of CAR-T Cell Therapeutics

AbbVie | February 11, 2021

AbbVie and Caribou Biosciences, Inc., a leading clinical-stage CRISPR genome altering biotechnology organization, reported today that they have gone into a cooperation and permit arrangement for the innovative work of fanciful antigen receptor (CAR)- T cell therapeutics. Albeit allogeneic, "off-the-shelf" CAR-T cell therapies have indicated early guarantee in some malignancy patients, the requirement for beating the dismissal of allogeneic CAR-T cells by the host immune system stays a vital test to their more extensive turn of events. Utilizing Caribou's CRISPR genome editing platform to engineer CAR-T cells to withstand have resistant assault would empower the advancement of the next-generation of "off-the-shelf" cellular therapies to benefit a broader patient population. "We are excited to partner with AbbVie on the development of new CAR-T cell therapies. This collaboration validates Caribou's differentiated next-generation CRISPR genome editing technologies that provide best-in-class efficiency and specificity," said Rachel Haurwitz, Ph.D., President and Chief Executive Officer of Caribou. "We believe AbbVie is an ideal partner for Caribou as we expand upon the number of targets and diseases addressable by our technologies. Genome-edited CAR-T cell therapies hold tremendous potential for patients, and this partnership accelerates our ability to address significant unmet medical need." About AbbVie AbbVie's mission is to discover and deliver innovative medicines that solve serious health issues today and address the medical challenges of tomorrow. We strive to have a remarkable impact on people's lives across several key therapeutic areas: immunology, oncology, neuroscience, eye care, virology, women's health and gastroenterology, in addition to products and services across its Allergan Aesthetics portfolio. About Caribou Biosciences, Inc. Caribou is a leading clinical-stage CRISPR genome editing biotechnology company founded by pioneers of CRISPR biology. Outside of this collaboration, Caribou is advancing an internal pipeline of allogeneic cell therapies for oncology. CB-010, Caribou's lead allogeneic CAR-T cell program, targets CD19 and is being evaluated in a Phase 1 clinical trial for patients with relapsed/refractory B cell non-Hodgkin lymphoma. CB-011, Caribou's second allogeneic CAR-T cell therapy, targets BCMA for multiple myeloma, and CB-012, Caribou's third allogeneic CAR-T cell therapy, targets CD371 for acute myeloid leukemia. CB-011 and CB-012 are in preclinical development. Additionally, Caribou is developing iPSC-derived allogeneic natural killer (NK) cell therapies for solid tumors. Through its next-generation CRISPR genome editing technologies, Caribou is implementing multiple strategies to boost CAR-T and NK cell persistence to overcome cell exhaustion and to prevent rapid immune-mediated clearance. These sophisticated edits drive the durability of clinical benefit of these off-the-shelf medicines.

Read More

CELL AND GENE THERAPY

Imara Announces Primary Endpoint Change in the Ardent Phase 2b Clinical Trial of Tovinontrine (IMR-687) in Sickle Cell Disease

Imara | November 22, 2021

Imara Inc. a clinical-stage biopharmaceutical company dedicated to developing and commercializing novel therapeutics to treat patients suffering from rare inherited genetic disorders of hemoglobin and other serious diseases, today announced a change to the primary endpoint for the Ardent clinical trial, a Phase 2b study of tovinontrine (IMR-687) in patients with sickle cell disease (SCD), based on the recommendation of the U.S. Food and Drug Administration (FDA). Imara requested feedback from the FDA on the draft statistical analysis plan (SAP) for the Ardent trial in which fetal hemoglobin (HbF) response was the primary endpoint and annualized rate of vaso-occlusive crises (VOCs) was the key secondary endpoint. In reviewing the Ardent draft SAP and prior to any database lock for analysis, the FDA recommended that Imara change the primary endpoint to be annualized rate of VOCs. HbF response will continue to be evaluated as a key secondary endpoint. The endpoint revisions do not affect the conduct of the trial or operational aspects of the study. As part of its recommendation, the FDA suggested further interactions regarding the revised SAP and engagement on the potential of the current program for regulatory decision-making. “We welcome the FDA’s recommendations and are in the process of changing the primary endpoint of the Ardent trial to be annualized rate of VOCs and moving HbF response to be a key secondary endpoint. A reduction in VOC rate is an established approval endpoint, and we are engaging the FDA further on this and related topics, including possible streamlined paths to registration.” Rahul Ballal, Ph.D., President and Chief Executive Officer of Imara Dr. Ballal continued, “In light of this endpoint revision, the previously planned fourth quarter interim analysis will no longer occur. That interim analysis had been designed to have a focus on safety and pharmacodynamic biomarkers, including HbF, but did not include a review of VOCs. The first review of data from the Ardent trial, including annualized VOC rate, will be conducted when all subjects have completed assessment at Week 24 or terminated early, and is planned for the first quarter of 2022, subject to our upcoming discussions with the FDA. Final data analysis from the Ardent trial remains on track for the second half of 2022. In June 2021, we reported promising data from our Phase 2a and open label extension clinical trials in SCD that demonstrated reduced annualized rates of VOCs in patients treated with tovinontrine versus placebo. We expect to present updated 12-month VOC data from our ongoing Phase 2a open label extension clinical trial at the American Society of Hematology Annual Meeting in December 2021.” About the Ardent Phase 2b Clinical Trial The Ardent Phase 2b clinical trial is a fully-enrolled, global, randomized, double-blind, placebo-controlled, multicenter study with approximately 115 adult patients with sickle cell disease (SCD) enrolled. The planned primary efficacy objective will be to evaluate the annualized rate of vaso-occlusive crises (VOCs) in patients dosed with tovinontrine (IMR-687) as compared to placebo. A key secondary endpoint will be to evaluate the proportion of all patients with fetal hemoglobin (HbF) response, defined as an absolute increase from baseline of at least 3% in HbF, as compared to placebo. Additional endpoints include the evaluation of the effect of tovinontrine versus placebo on other VOC-related outcome measures, HbF-associated biomarkers, markers of red blood cell hemolysis, white blood cell adhesion markers and quality of life measures over the course of a one-year treatment period. The FDA has granted Orphan Drug, Fast Track and Rare Pediatric Disease designations and the European Commission has granted Orphan Drug designation for tovinontrine for the treatment of SCD. About Tovinontrine (IMR-687) Tovinontrine is a highly selective and potent small molecule inhibitor of phosphodiesterase-9 (PDE9). PDE9 selectively degrades cyclic guanosine monophosphate (cGMP), an active signaling molecule that plays a role in vascular biology and hemoglobin production in red blood cells. Lower levels of cGMP are found in people with sickle cell disease (SCD) and beta-thalassemia and are associated with reduced blood flow, increased inflammation, greater cell adhesion and reduced nitric oxide mediated vasodilation. Blocking PDE9 acts to increase cGMP levels, which is associated with several benefits including the potential reactivation of fetal hemoglobin (HbF), a natural hemoglobin produced during fetal development. Increased levels of HbF in RBCs have been demonstrated to improve symptomology and substantially lower disease burden in both patients with SCD and patients with beta-thalassemia. About Sickle Cell Disease Sickle cell disease (SCD), a hemoglobinopathy, is a rare inherited red blood cell disorder. The disease causes structural abnormalities in hemoglobin that cause red blood cells to become inflexible and elongated, ultimately blocking blood flow to organs, which can lead to vaso-occlusive crises (VOCs). SCD is characterized by debilitating pain, progressive multi-organ damage and early death. The global prevalence of SCD is estimated to be approximately 4.4 million patients, including an estimated 100,000 patients in the United States and 134,000 patients in the European Union. About Imara Imara Inc. is a clinical-stage biotechnology company dedicated to developing and commercializing novel therapeutics to treat patients suffering from rare inherited genetic disorders of hemoglobin and other serious diseases. Imara is advancing tovinontrine (IMR-687), a highly selective, potent small molecule inhibitor of PDE9 that is an oral, potentially disease-modifying treatment currently in clinical development for sickle cell disease and beta-thalassemia and preclinical development for heart failure with preserved ejection fraction, or HFpEF. Imara is also advancing IMR-261, an oral activator of nuclear factor erythroid 2–related factor 2, or Nrf2. Cautionary Note Regarding Forward-Looking Statements Statements in this press release about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute “forward-looking statements” within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to (i) the Company’s plans to change the primary and secondary endpoints for the Ardent Phase 2b clinical trial of tovinontrine (IMR-687), (ii) the timing for reporting of additional data from the Ardent Phase 2b and open label extension clinical trials of tovinontrine in patients with sickle cell disease and (iii) the Company’s planned discussions with the FDA regarding the regulatory pathway for tovinontrine. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “target,” “will,” “would” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: the impact of extraordinary external events, such as the risks and uncertainties resulting from the impact of the COVID-19 pandemic on the Company’s business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities and ability to readout data from the Ardent Phase 2b and open label extension clinical trials of tovinontrine in sickle cell disease; the Company’s ability to advance the development of tovinontrine under the timelines it projects in current and future clinical trials, demonstrate in any current and future clinical trials the requisite safety and efficacy of tovinontrine; and other factors discussed in the “Risk Factors” section of the Company’s most recent Quarterly Report on Form 10-Q, which is on file with the Securities and Exchange Commission and in other filings that the Company makes with the Securities and Exchange Commission in the future. Any forward-looking statements contained in this press release speak only as of the date hereof, and the Company expressly disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise.

Read More