Novavax Selects AGC Biologics to Manufacture Matrix-M™ Adjuvant for Novel COVID-19 Vaccine

AGC Biologics | June 03, 2020

AGC Biologics, a global biopharmaceutical Contract Development and Manufacturing Organization (CDMO), has announced that it will partner with Novavax, Inc. (NASDAQ: NVAX), a late-stage biotechnology company developing next-generation vaccines for serious infectious diseases, on large-scale GMP production of a critical component of Novavax' coronavirus vaccine candidate, NVX-CoV2373. AGC Biologics will manufacture Matrix-M™, the  adjuvant component of the vaccine, in order to enhance the immune response and stimulate high levels of neutralizing antibodies. NVX-CoV2373 is a stable, prefusion protein made using Novavax' proprietary nanoparticle technology. AGC Biologics will optimize process development for scaled-up production of Matrix-M to significantly increase Novavax' capacity to deliver doses in 2020 and 2021. "We are quickly ramping up to successfully deliver this vital vaccine component to Novavax," says AGC Biologics' CEO Patricio Massera. "The urgency to help produce a vaccine to combat COVID-19 could not be higher." "AGC Biologics' mission is to work side-by-side with our partners to produce life-saving and extending products," says Mark Womack, CBO of AGC Biologics. "Partnering with Novavax to manufacture this vaccine component is an amazing opportunity to make a profoundly positive difference." "We have been impressed with AGC Biologics' level of collaboration and commitment," says Timothy J. Hahn, SVP, Process Technology at Novavax.

Spotlight

Nanotechnology is one of the most exciting and fast-moving areas of science today. In the food area, researchers are working with nanotechnology to create novel products that may be of benefit to health and diets. What are their possible applications? Is it safe? Watch our new video to get some answers.

Spotlight

Nanotechnology is one of the most exciting and fast-moving areas of science today. In the food area, researchers are working with nanotechnology to create novel products that may be of benefit to health and diets. What are their possible applications? Is it safe? Watch our new video to get some answers.

Related News

Biomica Announces the Advancement to Large-scale Production of BMC128, Its Live Bacterial Product Candidate Consortium

Biomica | October 13, 2020

Biomica, an emerging biopharmaceutical company developing innovative microbiome-based therapeutics, and a subsidiary of Evogene Ltd. (NASDAQ: EVGN) (TASE: EVGN), announced today the advancement to large-scale production of BMC128, its Live Bacterial Product (LBP) candidate consortium. The microbes, which will be produced in large-scale are expected to support Biomica's first-in-man proof-of-concept clinical trials for its immuno-oncology program, anticipated to begin in 2021. BMC128 is advancing to the GMP production stage following the successful completion of the initial R&D stage of drug product development and manufacturing, conducted by Biose Industrie (Aurillac, France). Biomica's immuno-oncology program is focused on its leading 4-strain candidate consortium BMC128. Biomica recently announced positive results in the program, demonstrating the efficacy of BMC128 in potentiating the response to immune-checkpoint inhibitors (ICI) in preclinical studies. In these studies, BMC128 was administered to mice bearing cancer tumors prior to and during ICI therapy, and the results showed that treatment with BMC128 significantly improved anti-tumor activity. Biose Industrie is a drug-GMP certified manufacturer of bacteria-based APIs and clinical and commercial products. As previously announced earlier this year, Biomica engaged Biose for the scale-up development and GMP production of a clinical batch of its drug candidates.

Read More

CELL AND GENE THERAPY

Imara Announces Primary Endpoint Change in the Ardent Phase 2b Clinical Trial of Tovinontrine (IMR-687) in Sickle Cell Disease

Imara | November 22, 2021

Imara Inc. a clinical-stage biopharmaceutical company dedicated to developing and commercializing novel therapeutics to treat patients suffering from rare inherited genetic disorders of hemoglobin and other serious diseases, today announced a change to the primary endpoint for the Ardent clinical trial, a Phase 2b study of tovinontrine (IMR-687) in patients with sickle cell disease (SCD), based on the recommendation of the U.S. Food and Drug Administration (FDA). Imara requested feedback from the FDA on the draft statistical analysis plan (SAP) for the Ardent trial in which fetal hemoglobin (HbF) response was the primary endpoint and annualized rate of vaso-occlusive crises (VOCs) was the key secondary endpoint. In reviewing the Ardent draft SAP and prior to any database lock for analysis, the FDA recommended that Imara change the primary endpoint to be annualized rate of VOCs. HbF response will continue to be evaluated as a key secondary endpoint. The endpoint revisions do not affect the conduct of the trial or operational aspects of the study. As part of its recommendation, the FDA suggested further interactions regarding the revised SAP and engagement on the potential of the current program for regulatory decision-making. “We welcome the FDA’s recommendations and are in the process of changing the primary endpoint of the Ardent trial to be annualized rate of VOCs and moving HbF response to be a key secondary endpoint. A reduction in VOC rate is an established approval endpoint, and we are engaging the FDA further on this and related topics, including possible streamlined paths to registration.” Rahul Ballal, Ph.D., President and Chief Executive Officer of Imara Dr. Ballal continued, “In light of this endpoint revision, the previously planned fourth quarter interim analysis will no longer occur. That interim analysis had been designed to have a focus on safety and pharmacodynamic biomarkers, including HbF, but did not include a review of VOCs. The first review of data from the Ardent trial, including annualized VOC rate, will be conducted when all subjects have completed assessment at Week 24 or terminated early, and is planned for the first quarter of 2022, subject to our upcoming discussions with the FDA. Final data analysis from the Ardent trial remains on track for the second half of 2022. In June 2021, we reported promising data from our Phase 2a and open label extension clinical trials in SCD that demonstrated reduced annualized rates of VOCs in patients treated with tovinontrine versus placebo. We expect to present updated 12-month VOC data from our ongoing Phase 2a open label extension clinical trial at the American Society of Hematology Annual Meeting in December 2021.” About the Ardent Phase 2b Clinical Trial The Ardent Phase 2b clinical trial is a fully-enrolled, global, randomized, double-blind, placebo-controlled, multicenter study with approximately 115 adult patients with sickle cell disease (SCD) enrolled. The planned primary efficacy objective will be to evaluate the annualized rate of vaso-occlusive crises (VOCs) in patients dosed with tovinontrine (IMR-687) as compared to placebo. A key secondary endpoint will be to evaluate the proportion of all patients with fetal hemoglobin (HbF) response, defined as an absolute increase from baseline of at least 3% in HbF, as compared to placebo. Additional endpoints include the evaluation of the effect of tovinontrine versus placebo on other VOC-related outcome measures, HbF-associated biomarkers, markers of red blood cell hemolysis, white blood cell adhesion markers and quality of life measures over the course of a one-year treatment period. The FDA has granted Orphan Drug, Fast Track and Rare Pediatric Disease designations and the European Commission has granted Orphan Drug designation for tovinontrine for the treatment of SCD. About Tovinontrine (IMR-687) Tovinontrine is a highly selective and potent small molecule inhibitor of phosphodiesterase-9 (PDE9). PDE9 selectively degrades cyclic guanosine monophosphate (cGMP), an active signaling molecule that plays a role in vascular biology and hemoglobin production in red blood cells. Lower levels of cGMP are found in people with sickle cell disease (SCD) and beta-thalassemia and are associated with reduced blood flow, increased inflammation, greater cell adhesion and reduced nitric oxide mediated vasodilation. Blocking PDE9 acts to increase cGMP levels, which is associated with several benefits including the potential reactivation of fetal hemoglobin (HbF), a natural hemoglobin produced during fetal development. Increased levels of HbF in RBCs have been demonstrated to improve symptomology and substantially lower disease burden in both patients with SCD and patients with beta-thalassemia. About Sickle Cell Disease Sickle cell disease (SCD), a hemoglobinopathy, is a rare inherited red blood cell disorder. The disease causes structural abnormalities in hemoglobin that cause red blood cells to become inflexible and elongated, ultimately blocking blood flow to organs, which can lead to vaso-occlusive crises (VOCs). SCD is characterized by debilitating pain, progressive multi-organ damage and early death. The global prevalence of SCD is estimated to be approximately 4.4 million patients, including an estimated 100,000 patients in the United States and 134,000 patients in the European Union. About Imara Imara Inc. is a clinical-stage biotechnology company dedicated to developing and commercializing novel therapeutics to treat patients suffering from rare inherited genetic disorders of hemoglobin and other serious diseases. Imara is advancing tovinontrine (IMR-687), a highly selective, potent small molecule inhibitor of PDE9 that is an oral, potentially disease-modifying treatment currently in clinical development for sickle cell disease and beta-thalassemia and preclinical development for heart failure with preserved ejection fraction, or HFpEF. Imara is also advancing IMR-261, an oral activator of nuclear factor erythroid 2–related factor 2, or Nrf2. Cautionary Note Regarding Forward-Looking Statements Statements in this press release about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute “forward-looking statements” within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to (i) the Company’s plans to change the primary and secondary endpoints for the Ardent Phase 2b clinical trial of tovinontrine (IMR-687), (ii) the timing for reporting of additional data from the Ardent Phase 2b and open label extension clinical trials of tovinontrine in patients with sickle cell disease and (iii) the Company’s planned discussions with the FDA regarding the regulatory pathway for tovinontrine. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “target,” “will,” “would” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: the impact of extraordinary external events, such as the risks and uncertainties resulting from the impact of the COVID-19 pandemic on the Company’s business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities and ability to readout data from the Ardent Phase 2b and open label extension clinical trials of tovinontrine in sickle cell disease; the Company’s ability to advance the development of tovinontrine under the timelines it projects in current and future clinical trials, demonstrate in any current and future clinical trials the requisite safety and efficacy of tovinontrine; and other factors discussed in the “Risk Factors” section of the Company’s most recent Quarterly Report on Form 10-Q, which is on file with the Securities and Exchange Commission and in other filings that the Company makes with the Securities and Exchange Commission in the future. Any forward-looking statements contained in this press release speak only as of the date hereof, and the Company expressly disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise.

Read More

MEDICAL

Mission Bio Announced the Launch of First Single-Cell Genomics Solid Tumor Solution on the Tapestri Platform

Mission Bio | March 30, 2022

Mission Bio, Inc., a pioneer in high-throughput single-cell DNA and multi-omics research, announced the commercial availability of the Tapestri Solution for Solid Tumor Research. On the Tapestri Platform, this new end-to-end single-cell DNA sequencing process comprises a nuclei isolation prep technique, pre-designed research panels for breast cancer and glioblastoma multiforme, and an enhanced single-cell copy number variation (CNV) bioinformatic analysis tool. Mission Bio currently covers solid tumors in addition to hematologic malignancies, where Tapestri is widely used to study tumor heterogeneity and gain new insights into the clonal variety and architecture driving disease progression, biomarkers, and therapeutic management. Recent high-profile research studies utilizing custom Tapestri assays for breast cancer, non-small cell lung cancer, colorectal cancer, and melanoma have demonstrated the utility of high-resolution tools for assessing solid tumor heterogeneity and clonal evolution, which contribute to disease onset, progression, and relapse. However, bulk next-generation sequencing technologies cannot offer the cell-by-cell mutational data required to detect disease-causing biological drivers — they are confined to population-level average metrics and lack information on clonal diversity. Tapestri quantifies DNA mutations at the individual cell level in thousands of cells simultaneously, simultaneously detecting SNVs, indels, and CNVs, conclusively identifying variant zygosity and mutational co-occurrence recognizing unusual cell populations. As a result, researchers studying solid tumors may now make use of a comprehensive workflow designed for the Tapestri Platform, which includes the following: Sample preparation assistance with an enhanced nuclei isolation process for both fresh and frozen samples New study panels for breast cancer and glioblastoma were meticulously selected to contain hotspot genes, copy number variants, and chromosomal arm aneuploidies linked with each illness. Additionally, users may create custom panels that target specific human or mouse genome regions. Enhanced capacity for CNV bioinformatics analysis with the development of a new visualization tool (in collaboration with Mission Bio's Field Application Scientist team). This integrated workflow approach has the potential to significantly advance our knowledge of disease progression and enable the development of more specific medicines. The commercial introduction of Mission Bio's Tapestri Solution for Solid Tumor Research demonstrates the company's ongoing commitment to allowing more precise cancer research using single-cell DNA sequencing. In addition, mission Bio has announced the establishment of its first Center of Excellence for solid tumor single-cell DNA profiling at Memorial Sloan Kettering Cancer Center (MSKCC). The impressive results already seen from our early work with solid tumor researchers helped guide the development of these new workflows and underscored our commitment to providing unique and indispensable tools for solid tumor researchers. Just as Tapestri has been an invaluable tool for hematologic malignancy researchers, we're confident that our research panel pair, new prep protocol, and improved bioinformatics analysis capabilities will demonstrate the platform's value in solid tumors." CEO of Mission Bio, Yan Zhang, Ph.D., said.

Read More