Machinery used in basic cell division does double duty as builder of neurons

Phys.org | February 28, 2019

Researchers at the San Diego branch of the Ludwig Institute for Cancer Research at University of California San Diego have identified an entirely new mechanism underlying the development and structure of the nervous system during embryogenesis. The findings, published in the February 28, 2019 issue of Developmental Cell, focus on the dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, to direct chromosome segregation during cell division. The work was conducted using Caenorhabditis elegans, a species of nematode, as the animal model.
During cell division or mitosis, the centromere regions of chromosomes assemble large protein machines called kinetochores to connect chromosomes to microtubules, which the chromosomes then use to separate to opposite ends of the cell. The microtubule-based physical separation of chromosomes ensures that the two new cells born after division inherit a complete genome.

Spotlight

Cost containment in the healthcare system has placed clinical laboratories under constant pressure to improve efficiency while addressing patient care and safety concerns. As part of the design process, today’s instrument manufacturers seek to ensure that automation errors do not occur. A cap inspection system is one solution to improve error prevention processes. By inspecting test tubes and caps to collect detailed information such as diameter, cap color, and cap type, instrument manufacturers no longer need to engineer for the worst case scenario.

Spotlight

Cost containment in the healthcare system has placed clinical laboratories under constant pressure to improve efficiency while addressing patient care and safety concerns. As part of the design process, today’s instrument manufacturers seek to ensure that automation errors do not occur. A cap inspection system is one solution to improve error prevention processes. By inspecting test tubes and caps to collect detailed information such as diameter, cap color, and cap type, instrument manufacturers no longer need to engineer for the worst case scenario.

Related News

RESEARCH

Chemistry42, an AI System from Insilico, has been Incorporated into UCB's Drug Discovery Programmes

Insilico Medicine | March 15, 2021

Insilico Medicine, an AI drug discovery company, reported that UCB will incorporate Insilico's Chemistry42™ into UCB's inward drug discovery pipeline. UCB's initial appropriation of Insilico Medicine's restrictive innovation will give UCB's researchers the capacity to plan novel hit compounds that fulfill various predefined boundaries quickly and smooth out lead enhancement. With the Chemistry42™ platform, UCB researchers will likewise lessen the endeavors and expenses commonly connected with the plan, testing and commercialization of new drugs. Chemistry42™ v1.0 will be modified and conveyed on UCB's cloud-based supercomputing infrastructure. Chemistry42™ is an adaptable, easy to understand programming platform that incorporates man-made brainpower (AI) strategies with the fields of therapeutic and computational science for the plan of novel little atoms with client characterized druglike physicochemical properties. The platform is an adaptable conveyed web application equipped for running various assignments in equal very quickly. Container coordination and work process the executives consider unsurprising equipment freethinker asset distribution and the execution on one or the other cloud or neighborhood HPC infrastructures. "UCB is one of the leading companies in small molecule drug discovery. It was their insight and approach at the forefront of this science that encouraged us to move into AI-powered chemistry over five years ago and it gives me great pleasure to see UCB among the launch partners of our Chemistry42 operating system," said Alex Zhavoronkov, Ph.D., CEO of Insilico Medicine. "Insilico Medicine has been very responsive in this quickly developing area of science and we are delighted to be one of the launch partners for Chemistry42," Jiye Shi, Global Head of Computer-Aided Drug Design at UCB said. "Our hope is that this platform will further enhance the digital transformation of our drug discovery capabilities for the benefit of patients worldwide." About Insilico Medicine Insilico Medicine develops software that leverages generative models, reinforcement learning (RL), and other modern machine learning techniques to generate new molecular structures with specific properties. Insilico Medicine also develops software for the generation of synthetic biological data, target identification, and the prediction of clinical trial outcomes. The company integrates two business models: providing AI-powered drug discovery services and software through its Pharma.AI platform (www.insilico.com/platform/) and developing its pipeline of preclinical programs. The preclinical program is the result of pursuing novel drug targets and novel molecules discovered through its platforms. Since its inception in 2014, Insilico Medicine has raised over $52 million and received multiple industry awards. About UCB UCB, Brussels, Belgium is a global biopharmaceutical company focused on the discovery and development of innovative medicines and solutions to transform the lives of people living with severe diseases of the immune system or of the central nervous system.

Read More

INDUSTRIAL IMPACT

Kane Biotech Announces New Collaboration Agreements for Prosthetic Joint Infection, expanding its DispersinB® applications

Kane Biotech Inc. | February 11, 2022

Kane Biotech Inc. announces that it has signed collaboration agreements with Dr. James Doub, MD, Assistant Professor of Medicine, University of Maryland School of Medicine’s Institute of Human Virology, and the University of Texas Medical Branch (UTMB) to study the use of DispersinB® with Prosthetic Joint Infection (PJI) patients. The group is securing funding from the National Institutes of Health (NIH) for pre-clinical work to be done by Josh Wenke, a Professor in the Department of Orthopedic Surgery and Rehabilitation at UTMB. PJI’s are one of the most serious complications of joint replacement surgery. Conservative estimates are that approximately 1–2% of all prostheses will become infected over the life of the implant [1]. The financial burden of treating these infections is staggering. It is estimated that they will cost the US healthcare system $1.62 billion in 2020 [1]. In addition, patients have significant morbidity and mortality as a direct result of our current medical and surgical management to treat these infections [2]. In one study, the five-year mortality for prosthetic joint infections is over 20% [2]. “These collaborations are of utmost importance given our shared strategies for managing complex musculoskeletal infections and finding cures for the debilitating morbidity associated with PJI. We are highly optimistic of advancing this field scientifically and clinically for the benefit of patients across the globe” Marc Edwards, CEO of Kane Biotech “The Institute of Human Virology has been testing the use of bacteriophage therapeutics in treating recalcitrant PJIs with some early signals of success,” explained Dr. Doub, who is also Director of Infectious Diseases Ambulatory Practice at the University of Maryland Medicine Center. “However, DispersinB®, has properties that bacteriophages do not have which include superior application as a preventative therapeutic, broader spectrum of activity, and a much easier regulatory (FDA) path.” Dr. Doub is a consultant for Kane Biotech. Dr. Nanda Yakandawala, Vice President of Research and Development at Kane, in collaboration with Dr. Doub and Josh Wenke, Ph. D, recently submitted a R-21 grant application to NIH to fund pre-clinical work to be performed by Dr. Wenke. About University of Texas Medical Department Established in 1891 as the University of Texas Medical Department, UTMB was the nation's first public medical school and hospital under unified leadership and has evolved into a modern academic health science center with multiple campus locations and almost 1,000 faculty members educating approximately 3,500 students. Since the beginning, UTMB has been at the forefront of medical research, with researchers studying the viruses common to a sub-tropical island climate. Today, our world-renowned investigators generate a portfolio exceeding $160 million, and work in state-of-the-art laboratories developing diagnostic tools, cures and vaccines to benefit the global community. About Kane Biotech Kane Biotech is a biotechnology company engaged in the research, development, and commercialization of technologies and products that prevent and remove microbial biofilms. The company has a portfolio of biotechnologies, intellectual property (81 patents and patents pending, trade secrets, and trademarks) and products developed by the company's own biofilm research expertise and acquired from leading research institutions. StrixNB™, DispersinB®, Aledex™, bluestem™, bluestem®, silkstem™, goldstem™, coactiv+™, coactiv+®, DermaKB™ and DermaKB Biofilm™ are trademarks of Kane Biotech Inc.

Read More

AI

Labcorp and PathAI Expand their Partnership to Accelerate Use of AI-Powered Pathology

PathAI, Labcorp | March 09, 2021

PathAI, a global supplier of artificial intelligence-powered (AI-powered) innovation for use in pathology research, and Labcorp, a main global life sciences company, today declared the expanding of their essential organization in the field of AI-powered pathology. The coordinated effort expands on Labcorp's past investment in PathAI and the companies' cooperation on a progression of projects, remembering the deployment of PathAI algorithms for clinical trials oversaw by Labcorp Drug Development. A critical focal point of the extended joint effort will be to empower, in planned clinical trials of cancer and different diseases, the seamless deployment of PathAI's algorithms in the expansive arrangement of projects oversaw by Labcorp Drug Development. These PathAI algorithms are created utilizing Good Clinical Laboratory Practice (GCLP) rules and cycle controls and are bolted and validated as fit for reason; they can likewise be additionally reached out to companion diagnostic (CDx) gadget development and commercialization. They can be sent in review or imminent clinical trials to evaluate tissue-based biomarkers and can uphold patient stratification and selection. The algorithms have numerous potential extra uses where robust deployment and information assortment are required. Labcorp and PathAI plan to investigate connecting the utilization of AI-powered algorithms from translational research into a clinical laboratory setting. “We are very impressed with the vision that Labcorp has for the future of AI-powered pathology in drug development and diagnostics, and we look forward to joining forces to enable our bio-pharma partners to obtain the most accurate, standardized, and data-rich set of pathology readouts from clinical trials to help advance drug development,” said PathAI CEO Andy Beck. “After exploring successful initial projects with Labcorp, we are excited to leverage the scale of its network to grow the reach of digital and computational pathology with the goal of ultimately improving patient outcomes.” “It has been great working with PathAI to expand computational pathology applications in oncology and other diseases that have often been resistant to digitization,” said Paul Kirchgraber, M.D., CEO, Labcorp Drug Development. “This collaboration will provide our bio-pharma partners a differentiated understanding of relevant patient characteristics through applying leading AI-driven algorithms to support clinical trials from novel biomarker development through patient stratification and companion diagnostic development.” About PathAI PathAI is a leading provider of AI-powered research tools and services for pathology. PathAI’s platform promises substantial improvements to the accuracy of diagnosis and the efficacy of treatment of diseases like cancer, leveraging modern approaches in machine and deep learning. Based in Boston, PathAI works with leading life sciences companies and researchers to advance precision medicine. About Labcorp Labcorp is a leading global life sciences company that provides vital information to help doctors, hospitals, pharmaceutical companies, researchers, and patients make clear and confident decisions. Through our unparalleled diagnostics and drug development capabilities, we provide insights and accelerate innovations to improve health and improve lives. With more than 70,000 employees, we serve clients in more than 100 countries. Labcorp reported revenue of $14 billion in FY2020.

Read More