INDUSTRIAL IMPACT

Inventors of biolayer interferometry technology launch a next gen platform and novel biosensors

Gator Bio | September 15, 2021

Gator Bio, Inc. announced today the launch of the GatorPlus, a next generation biolayer interferometry (BLI) instrument and two new biosensor products, Gator™ Flex SA Kit and Gator™ AAVX probe. The GatorPlus adds to the currently available GatorPrime instrument; and the new Gator™ Flex SA Kit and Gator™ AAVX probe expand the off the shelf biosensor portfolio to 14 products for the North America market. Gator Bio also offers on demand custom biosensors for specific application needs. GatorPlus is a bench-top instrument for real-time label-free analysis of molecular interactions and quantitation in 96-well or 384-well microplates. The instrument offers longer walk-away time and more automation compared to GatorPrime, the first Gator instrument launched in March 2019.    

Based on Gator Bio's proprietary technology, the Gator™ Flex SA Kit is the industry's first ever reactivable streptavidin biosensor for BLI. It can be reactivated and reused more than 20 times without performance degradation, enabling significant cost saving for Gator system customers. The Gator™ AAVX probe quantitates many serotypes of AAVs automatically in minutes, greatly simplifying AAV developers' workflow. The results obtained from the Gator™ AAVX probes correlate tightly to the gold standard method.

Gator Bio was founded by Dr. Hong Tan and Mr. Robert Zuk, the pioneers of biolayer interferometry. The company has been focused on development and commercialization of the next generation BLI that greatly enhances the performance and cost effectiveness of this simple yet powerful analytical technology. In addition to the newly introduced Gator™ Flex SA Kit and Gator™ AAVX probes, Gator Bio offers a wide range of products, including the highly sensitive SMAP biosensor and the regenerable mouse Fc capture biosensor. The Gator systems and associated biosensors provide convenient kinetic analysis and concentration determination for the development of antibody and protein therapeutics.

 

"We saw problems and shortcomings with the original BLI technology, so we decided to come back to close the gaps with new ways to realize BLI. Our objective is to enable the most effective and efficient BLI systems for scientists".   

  - Dr. Hong Tan, CEO of Gator Bio. 


About Gator Bio,Inc.
Gator Bio is a life sciences company providing bioanalytical systems to accelerate the development of therapeutics and diagnostics. Gator Bio along with its sister company ET Healthcare are part of Access Medical Systems. The Gator instruments and biosensors enable real-time analysis of biomolecular interactions providing information on affinity, kinetics, concentration and epitope binning, etc. Most importantly, Gator Bio's analytical capabilities enable better and faster characterization of drug candidates, thus providing greater value in drug development applications where existing methods have limitations in throughput, performance, and cost. The company is headquartered in Palo Alto, California with facilities in Shanghai and Suzhou, China.

Spotlight

Are you faced with the task of relocating a biospecimen collection? Moving a substantial inventory of samples is a logistical challenge, and requires managing temperature, equipment, regulatory, and personnel safety issues. The choice of vehicle used for transport may be low on the list, but the right truck can be critical to success.

Spotlight

Are you faced with the task of relocating a biospecimen collection? Moving a substantial inventory of samples is a logistical challenge, and requires managing temperature, equipment, regulatory, and personnel safety issues. The choice of vehicle used for transport may be low on the list, but the right truck can be critical to success.

Related News

CELL AND GENE THERAPY

Emergent BioSolutions Completes Acquisition of Exclusive Worldwide Rights to TEMBEXA® First FDA-Approved Smallpox Oral Antiviral for All Ages

TEMBEXA and Smallpox | September 27, 2022

Emergent BioSolutions Inc. announced that it has completed its acquisition of exclusive worldwide rights to TEMBEXA® the first oral antiviral approved by the U.S. Food and Drug Administration for all age groups for the treatment of smallpox, from Chimerix. TEMBEXA was approved in June 2021 and is indicated for the treatment of human smallpox disease in adult and pediatric patients, including neonates. The completion of the acquisition follows the satisfaction or waiver by the parties, as applicable, of all closing conditions, including expiration of the waiting period under the Hart-Scott-Rodino Antitrust Improvements Act of 1976 (HSR Act), as amended, and receipt of consent from the Biomedical Advanced Research and Development Authority (BARDA), part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, for a sub-contract agreement between Chimerix and Emergent. “The addition of TEMBEXA to our smallpox medical countermeasure franchise, which consists of our smallpox vaccine and therapeutic for smallpox vaccine complications, creates a more comprehensive offering to combat this deadly public health threat. We look forward to supporting the U.S. government’s smallpox preparedness strategy on a broader scale by executing on this BARDA contract.” Paul Williams, SVP government/MCM business at Emergent The 10-year contract valued at up to $680 million, to supply up to 1.7 million treatment courses of tablet and suspension formulations of TEMBEXA® to the U.S. government, was awarded to Chimerix on August 29, 2022. The contract includes an initial product procurement valued at approximately $115 million, with optional future procurement, valued at up to approximately $551 million, exercisable at the sole discretion of BARDA. In addition to product procurement, the contract includes reimbursed post marketing activities of approximately $12 million. Financial Terms Based on the terms of the final BARDA agreement, Emergent is expected to pay Chimerix An upfront payment of $238 million; Potential milestone payments of up to $124 million contingent on the potential exercise by the U.S. government of procurement options following the base period; 15% royalty on gross profit from sales of TEMBEXA outside the U.S.; 20% royalty on gross profit from sales of TEMBEXA in the U.S. that are in excess of the 1.7 million treatment courses as contemplated in the existing BARDA contract; and Up to an additional $12.5 million upon achievement of certain development-based milestones. ABOUT TEMBEXA TEMBEXA is an oral antiviral approved by the FDA in June 2021 for the treatment of human smallpox disease caused by variola virus in adult and pediatric patients, including neonates. TEMBEXA is formulated as 100 mg tablets and 10 mg/mL oral suspension dosed once weekly for two weeks. The oral suspension formulation is particularly important for patients who have difficulty swallowing due to age or medical status. TEMBEXA is not indicated for the treatment of diseases other than human smallpox disease. The effectiveness of TEMBEXA for the treatment of smallpox disease has not been determined in humans because adequate and well-controlled field trials have not been feasible and inducing smallpox disease in humans to study the drug’s efficacy is not ethical. TEMBEXA efficacy may be reduced in immunocompromised patients based on studies in immune deficient animals. TEMBEXA has a BOXED WARNING for increased risk for mortality when used for longer duration. About Smallpox Smallpox is a highly contagious disease caused by the variola virus. Historically, smallpox was one of the deadliest diseases in history with a case fatality rate of approximately 30%. Despite successful eradication of smallpox in the 1970s, there is considerable concern that variola virus could reappear, either through accidental release or as a weapon of bioterrorism. According to the U.S. Centers for Disease Control and Prevention variola virus is ranked in the highest risk category for bioterrorism agents due to its ease of transmission, high mortality rate, and potential to cause public panic and social disruption. Based on a recent report – The Department of Health and Human Services Fiscal Year 2023 Public Health and Social Services Emergency Fund Justification of Estimates for Appropriations Committee – smallpox remains a threat of high concern to both the domestic and international community. About Emergent BioSolutions At Emergent, our mission is to protect and enhance life. For over 20 years, we’ve been at work defending people from things we hope will never happen—so we are prepared just in case they ever do. We provide solutions for complex and urgent public health threats through a portfolio of vaccines and therapeutics that we develop and manufacture for governments and consumers. We also offer a range of integrated contract development and manufacturing services for pharmaceutical and biotechnology customers.

Read More

CELL AND GENE THERAPY

Intravacc announces additional favorable preclinical and toxicology data for Avacc 10®, an intranasal SARS-CoV-2 candidate vaccine

Intravacc | September 12, 2022

Intravacc, a world leader in translational research and development of preventive and therapeutic vaccines, today announced additional favorable preclinical and toxicology data for Avacc 10®, the company's SARS-CoV-2 intranasal candidate vaccine. These results demonstrate a reduction in upper respiratory tract viral load, broad cross protection against circulating variants of concern. and a good safety profile, allowing progression towards a phase I clinical study. "Based on our additional pre-clinical data, Avacc 10® has the potential to reduce the spreading of the virus as well as providing broad protection against circulation variants. Combined with the favorable toxicological safety data, this puts us a good position for our Phase I clinical trial, which will commence in Q4 2022." Dr. Jan Groen, Intravacc's Chairman & CEO The first set of pre-clinical studies of Avacc 10®, published in Frontiers of Immunology in December 2021, demonstrated high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in serum, and the nose and lungs after two intranasal vaccinations 3 weeks apart. Avacc 10® vaccinated hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs and histopathology showed no lesions in lungs 7 days after challenge. The objectives of the additional pre-clinical and toxicology study of Avacc 10® were to study the dosing, cross neutralization and safety of the intranasal vaccine. For the dosing study, mice were vaccinated intranasally with two doses of various concentrations of OMV and Spike protein. Three weeks after the last vaccination neutralizing antibodies against the SARS-CoV-2 Wuhan strain and variants of concern Delta, Gamma and Omicron were determined in the sera. High virus neutralizing antibody titers were detected against all the variant viruses. Syrian hamsters were used to study viral replication after challenge with SARS-CoV-2. A reduced viral load in throat and lungs and highly reduced lung lesions were observed in Avacc 10® vaccinated animals exposed to placebo vaccinated, challenged animals. Furthermore, delayed transmission of Avacc 10® vaccinated, challenged animals to placebo vaccinated animals was observed. The purpose of the repeated dose toxicity study was to assess the safety and tolerability of Avacc 10® when administered through the intranasal route in New Zealand White Rabbits. Animals were vaccinated 3 times with Avacc 10® , and control animals with OMV only, or saline buffer. Toxicity was monitored until 2 weeks after the final vaccination. No clinical signs of toxicity nor morbidity/mortality were found in any of the groups, and no gross pathological changes were observed, demonstrating the safety of OMV based vaccine. All Avacc 10® vaccinated animals showed high IgG antibodies levels against Spike as well as virus neutralizing antibodies. Based on the outcome of the Phase I trial, Intravacc will seek manufacturing and commercialization license partners. About Intravacc's OMV platform technology For the development of vaccines, Intravacc has designed and developed a platform based on outer membrane vesicles (OMVs) - spherical particles with intrinsic adjuvant properties. The OMVs can be rigged with immunogenic peptides and/or proteins that stimulate effective adaptive immunity. The OMV carrier has been optimized to induce a more effective immune response against these newly introduced antigens. Intravacc has also developed genetic tools to increase the yield of OMVs, reduce the toxicity and achieve the desired antigenic composition. Intravacc's OMV platform is fully scalable and allows rapid and efficient modification of the antigen composition, either through genetic modification of the bacterial host or by associating antigens with stored OMVs. About Intravacc Intravacc, located at Utrecht Science Park Bilthoven in the Netherlands, is a leading global contract development and manufacturing organization for infectious diseases and therapeutic vaccines. As an established independent CDMO with many years of experience in the development and optimization of vaccines and vaccine technologies, Intravacc has transferred its technology world-wide for many vaccines including polio-, measles-, DPT-, Hib- and influenza. Around 40% of childhood disease vaccines are based on Intravacc's know-how and proprietary technology. Intravacc offers a wide range of expertise for independent vaccine development, from concept to Phase I/II clinical studies for partners around the world, including universities, public health organizations biotech and pharmaceutical companies.

Read More

INDUSTRIAL IMPACT

Ginkgo Bioworks Completes Acquisition of Zymergen

Ginkgo Bioworks | October 20, 2022

Today, Ginkgo Bioworks the leading horizontal platform for cell programming, and Zymergen announced that Ginkgo has completed its previously announced acquisition of Zymergen. The acquisition is expected to significantly enhance Ginkgo's platform by integrating strong automation and software capabilities as well as a wealth of experience across diverse biological engineering approaches. "Today marks an important step in our long-term growth as we complete the Zymergen acquisition and welcome their world-class team to Ginkgo. We are excited to integrate Zymergen's capabilities into our platform and explore new and expanded partnerships and opportunities for their diverse array of product concepts currently under development." Jason Kelly, CEO and co-founder of Ginkgo Bioworks Under the terms of the merger agreement entered into on July 24, 2022, Zymergen stockholders received, for each share of Zymergen common stock, 0.9179 shares of Ginkgo Class A common stock. Zymergen shares will no longer be traded on Nasdaq. Ginkgo Class A common stock will continue to trade on NYSE under the ticker symbol DNA. About Ginkgo Bioworks Ginkgo is building a platform to enable customers to program cells as easily as we can program computers. The company's platform is enabling biotechnology applications across diverse markets, from food and agriculture to industrial chemicals to pharmaceuticals. Ginkgo has also actively supported a number of COVID-19 response efforts, including K-12 pooled testing, vaccine manufacturing optimization and therapeutics discovery. About Zymergen Zymergen is a biotech company that designs and produces molecules, microbes and materials for diverse end markets. Zymergen partners with nature to make better products, a better way, for a better world.

Read More