How plants expand their capacity to use solar energy

Massachusetts Institute of Technology | February 07, 2019

Green plants capture light that spans the visible solar spectrum, and while a broad spectral range is required for sufficient absorption, the process requires energy to be funneled rapidly and efficiently downhill to drive charge separation and water splitting. Carotenoids, the accessory pigments in photosynthesis, play light harvesting, photoprotective, and structural roles. Understanding these roles, however, has proved to be a challenge due to the fact that carotenoid's energetics are highly sensitive to their environment. Now a team led by Thomas D. and Virginia W. Cabot Career Development Assistant Professor Gabriela Schlau-Cohen has discovered that a single carotenoid—LHCII—in the major antenna complex of green plants serves as the nexus of light harvesting by accumulating energy and transferring it through a debated dark state. This photophysics reveals how plants expand their capacity to capture and utilize solar energy. "Solar energy devices must absorb a large fraction of the solar spectrum—i.e., many different energies or colors—to be competitive with fossil fuels," says Minjung Son, a graduate student in Schlau-Cohen's lab and one of the authors of a paper on the research. "Absorption of these energies comes with a challenge: How can the high energy be funneled down to the low energy, which is what is used to produce electricity and eventually biomass?"

Spotlight

By devising computer models of individual patients’ hearts, Natalia Trayanova, Ph.D., the Murray B. Sachs Professor at Johns Hopkins University, has found ways to better treat and prevent arrhythmias. Trayanova's talk was recorded on Oct. 2, 2014, at the Institute for Basic Biomedical Sciences' Molecules & Martinis event held in Palo Alto, CA.

Spotlight

By devising computer models of individual patients’ hearts, Natalia Trayanova, Ph.D., the Murray B. Sachs Professor at Johns Hopkins University, has found ways to better treat and prevent arrhythmias. Trayanova's talk was recorded on Oct. 2, 2014, at the Institute for Basic Biomedical Sciences' Molecules & Martinis event held in Palo Alto, CA.

Related News

INDUSTRIAL IMPACT

FogPharma Announces $178 Million Series D Financing to Advance Pipeline of First-in-Class Helicon Polypeptide Therapeutics Targeting

FogPharma | November 22, 2022

FogPharma®, a biopharmaceutical company pioneering a new class of precision medicines that could ultimately prove applicable to the vast majority of therapeutic targets, including those previously considered “undruggable,” today announced a $178 Million Series D financing. The financing round includes new investors ARCH Venture Partners, Milky Way Investments and Fidelity Management & Research Company and existing investors VenBio Partners, Deerfield Management, GV, Cormorant Asset Management, funds and accounts advised by T. Rowe Price Associates, Inc., Invus, Farallon Capital Management, HBM Healthcare Investments, Casdin Capital, and PagsGroup, also participated. Proceeds from the Series D financing will be used to advance and accelerate FogPharma’s growing pipeline of hyperstabilized α-helical polypeptide therapeutics, a proprietary new class of drugs designed to overcome the limitations of today’s precision medicines with broad applicability to the vast majority of disease targets and therapeutic areas. FogPharma’s lead Helicon polypeptide development candidate, FOG-001, a first-and-only-in-class direct TCF-blocking β-catenin inhibitor with potential applicability to significant cancer patient populations, is expected to enter clinical development in mid-2023. In addition, FogPharma is advancing other first-in-class programs against important, biologically validated cancer targets that have remained elusive to other approaches including TEAD, NRAS, Pan-KRAS, ERG and Cyclin E1. “FogPharma continues to make rapid progress on our moonshot mission to achieve universal druggability – a world where no targets are off-limits to medicine. We believe that Helicon polypeptides, a compelling new therapeutic modality, represent the future of precision medicine. We are thrilled by the support of our investors and will continue to build our platform capabilities, product pipeline which aims to address a significant percentage of cancer patient populations, and our phenomenal team across all levels as we aim to create one of the most impactful new classes of drugs in history.” Gregory Verdine, Ph.D., founder, chairman and chief executive officer of FogPharma In connection with the Series D Financing, Rick Klausner, M.D., has been appointed to FogPharma’s board of directors. In addition, Dr. Verdine has been appointed as chairman of the board. “The team at FogPharma is building an unprecedented new therapeutic modality and robust pipeline with the potential to make a meaningful difference in the lives of cancer patients,” said Dr. Klausner. “I am excited to join the board of directors and be part of something special – particularly at this important time as FogPharma continues to impressively scale its science, team, operations and infrastructure, with the goal of advancing its first Helicon polypeptide therapeutic into the clinic.” Dr. Klausner is currently the founder and chief scientist of Altos Labs and founder and chairman of Lyell Immunopharma. Dr. Klausner was founder and director of Juno Therapeutics and founder and director of GRAIL. He is also the chairman of Sonoma Biotherapeutics and co-founder and chairman of Lifemine Therapeutics. Previously, Dr. Klausner served as senior vice president, chief medical officer and chief opportunity officer of Illumina Corporation and as executive director for global health for the Bill and Melinda Gates Foundation. Dr. Klausner was appointed by Presidents Clinton and Bush as the eleventh director of the U.S. National Cancer Institute (NCI) between 1995 and 2001. Dr. Klausner served as chief of the Cell Biology and Metabolism Branch of the National Institute of Child Health and Human Development as well as a past president of the American Society of Clinical Investigation. He has served in senior advisory roles to the U.S., Norwegian, Qatari and Indian governments. About FogPharma’s Universal Druggability Platform and Helicon™ Polypeptide Therapeutics Existing drug classes are limited in both reach and applicability, with more than 80% of known human protein disease targets considered “undruggable” because they are beyond the reach of both antibodies and small molecules. FogPharma’s Helicon peptide drug discovery engine integrates directed evolution, proprietary α-helix conformational hyperstabilization chemistry, highly multiplexed drug optimization technology, artificial intelligence including deep learning and machine learning, structure-based drug discovery, cancer genomics and biology, and multiscale manufacturing to rapidly discover Helicon polypeptide therapeutics. This novel therapeutic modality combines the targeting strength and specificity of antibodies with the broad tissue distribution, intracellular target engagement and oral dosing optionality of small molecules to address the limitations of today’s precision medicines and reach the most difficult targets – achieving universal druggability. About FOG-001 FogPharma’s lead Helicon polypeptide development candidate, FOG-001, a first-and-only-in-class direct TCF-blocking β-catenin inhibitor. Dysregulation of the Wnt/β-catenin signaling pathway has been shown to occur in at least 20% of all human cancers. In the U.S. alone, FOG-001 has the potential to become a new treatment option for >1 million patients suffering from a broad range of intractable cancers. In biochemical and cellular studies, FOG-001 has been shown to potently, precisely and selectively disrupt the interaction of β-catenin with its obligate downstream transcription factor, TCF. Preclinical studies have demonstrated the ability of FOG-001 to cause tumor growth inhibition and regression by disrupting β-catenin-dependent signaling. FOG-001 is the inaugural member of FogPharma’s TCF-Catenix family of direct-acting β-catenin antagonists and combines key features that distinguish it from previously reported Wnt/β-catenin pathway modulators: FOG-001 acts inside the cell, where it directly binds the key oncogenic driver β-catenin; and FOG-001 blocks TCF-β-catenin engagement at the most downstream node in the canonical Wnt pathway, thus abrogating the signal transmission mechanism by which most, if not all, known Wnt pathway mutations are believed to drive oncogenesis. About FogPharma FogPharma is a biopharmaceutical company pioneering the discovery and development of Helicon™ polypeptides. Through this novel therapeutic modality, FogPharma aims to address the limitations of existing drug classes and achieve universal druggability – a world where no targets are off-limits to new medicines. Spun out of Harvard University by pioneering academic scientist and successful biotech company builder Dr. Gregory Verdine, FogPharma is advancing a broad pipeline of Helicon polypeptide therapeutics against important and biologically validated cancer targets that have remained elusive to other approaches, with the goal of providing new targeted treatment options for significant cancer patient populations. FogPharma is headquartered in Cambridge, Mass., and has raised more than $360 million to date from leading life sciences investors.

Read More

INDUSTRIAL IMPACT

IPA’s Subsidiary BioStrand and BriaCell Announce Artificial Intelligence Collaboration and License Agreement

BriaCell Therapeutics Corp. | December 01, 2022

IPA an advanced biotherapeutic research and technology company, announced that BioStrand BV an AI in silico discovery subsidiary of IPA, has entered into a research collaboration and license agreement with BriaCell Therapeutics Corp. a clinical-stage biotechnology company specializing in targeted immunotherapies for cancer. The collaboration will leverage BioStrand’s LENSai™ software, built upon IPA’s proprietary HYFT™ Universal Fingerprint™ technologies, and will focus on in silico antibody discovery to generate relevant clinical molecules for potential development. Under the terms of the Agreement, BioStrand and BriaCell will collaborate on the design, discovery, and development of anti-cancer antibodies. Upon successful antibody discovery, BioStrand will receive an upfront payment of US$500,000, and will be eligible to receive future success-based development milestones, including those for the submission of Investigational New Drugs clinical milestone payments, and commercial royalties on net sales of products. Further terms are not disclosed. “We are very excited to begin this program with BriaCell and apply our technology to the development of biologics that may have a huge clinical impact. Shortening timelines, while also integrating as much information as possible upstream to improve the efficiency of the process, is extremely important in the development of highly targeted therapies. It is a step towards realizing our long-term vision of significantly advancing precision medicine.” Dr. Ingrid Brands, General Manager and co-founder of BioStrand “We believe that BioStrand’s revolutionary AI-powered technology, combined with its cutting-edge protein engineering platform, will allow us to design and discover potent anti-cancer therapeutics,” stated Miguel A. Lopez-Lago, PhD, Chief Scientific Officer of BriaCell. “This approach would complement BriaCell’s current immunotherapy pipeline of innovative anti-cancer therapeutics.” About BriaCell Therapeutics Corp. BriaCell is an immuno-oncology-focused biotechnology company developing targeted and effective approaches for the management of cancer. ImmunoPrecise Antibodies Ltd. ImmunoPrecise Antibodies Ltd. has several subsidiaries in North America and Europe including entities such as Talem Therapeutics LLC, Biostrand BV, ImmunoPrecise Antibodies Ltd. and ImmunoPrecise Antibodies B.V. The IPA Family is a biotherapeutic research and technology group that leverages systems biology, multi-omics modelling and complex artificial intelligence systems to support its proprietary technologies in bioplatform-based antibody discovery. Services include highly specialized, full-continuum therapeutic biologics discovery, development, and out-licensing to support its business partners in their quest to discover and develop novel biologics against the most challenging targets.

Read More

CELL AND GENE THERAPY

Lunaphore and Nucleai announce a partnership to provide AIpowered spatial biology analysis to accelerate drug development

Lunaphore and Nucleai | September 09, 2022

Lunaphore, a Swiss life sciences company developing technology to enable spatial biology in every laboratory, and Nucleai, a leader in AI-powered spatial biology transforming precision medicine by unlocking the power of pathology data announced a collaboration to accelerate the discovery of novel biomarkers and drug targets using the latest spatial imaging and machine learning technologies. “We are thrilled to announce the partnership with Lunaphore and combine Lunaphore’s best-in-class flagship COMET™, a hyperplex staining and imaging platform, with Nucleai’s ATOM platform that uniquely supports multiplex, IHC, and H&E data. This strategic partnership will allow us to utilize multiplex technology and provide a complete, actionable, and scalable solution to improve drug target discovery and development of our pharma and biotech partners.” Avi Veidman, Chief Executive Officer of Nucleai Mapping biological microenvironments with spatial mapping technology is an exciting area of discovery. Lunaphore’s novel COMET™ technology unlocks the power of immunofluorescence spatial biology with a robust and user-friendly system, permitting the use of any non-conjugated antibodies and enabling the wide adoption of spatial biology in laboratories. Nucleai has built a platform that makes spatial analysis scalable and operational, enabling the next generation of actionable insights from massive pathology data sets that have not been analyzed to their fullest potential and could provide significant value to pharmaceutical companies and diagnostic labs. The partnership will utilize Lunaphore’s innovative COMET™ platform for hyperplex staining and imaging with Nucleai’s cutting-edge AI spatial models to derive new insights from tissue biopsies, including novel drug targets, mechanisms of action, and biomarkers to advance the field of precision medicine. The combined solutions will provide laboratories with an integrated end-to-end spatial biology workflow from automated, hyperplex sequential immunofluorescence staining and imaging to AI-enabled, state-of-the-art image processing, and data analytics. As part of the partnership, the companies also plan to develop predictive and prognostic spatial biomarker assays. “Our partnership with Nucleai is based on our shared vision to advance next-generation spatial multiplex immunofluorescence imaging to accelerate drug and biomarker discovery and development,” said Déborah Heintze, Chief Marketing Officer of Lunaphore. “Connecting Nucleai’s solution with COMET™, we have the potential to more precisely characterize the immune system and disease microenvironment to provide deeper biological insights to drug developers.” “Nucleai brings innovative spatial biology and machine learning platform (ATOM) to empower researchers with novel insights into drug discovery,” said Mridula Iyer, Ph.D., Vice President of Strategic Partnerships at Nucleai. “The technology is designed to unlock and analyze valuable data from pathology slides previously inaccessible, leading to the development of new precise targeted therapy that is important for patient outcomes. This collaboration is another example of how both Lunaphore and Nucleai are accelerating efforts to partner with pharmaceutical and biopharmaceutical companies, as well as medical research institutions and other biomedical organizations.” About COMET™ COMET™ is a fully automated sequential immunofluorescence instrument, able to perform hyperplex staining and imaging, producing high-quality data in a robust and reproducible manner. With superior tissue profiling capabilities, the system allows multiplex analysis of up to 40 different spatial markers per tissue slide without human intervention. COMET™ has a wide range of research applications, allowing for a dramatic improvement in the understanding of disease pathology in areas such as immuno-oncology, neuroscience, and infectious diseases. The technology has the ability to revolutionize clinical applications such as drug discovery and biomarker development. About Lunaphore Lunaphore Technologies S.A. is a Swiss company born in 2014 with the vision of enabling spatial biology in every laboratory. Lunaphore has developed a game-changing chip technology that can extract spatial proteomic and genomic data from tumors and transform any simple assay into multiplex spatial biology without complexity. Lunaphore empowers researchers to push the boundaries of research to ultimately develop the next generation personalized therapies. About Nucleai Nucleai is an AI-powered spatial biology company with a mission to transform drug development and clinical treatment decisions by unlocking the power of pathology data. Nucleai provides pharmaceutical companies, Contract Research Organizations, and diagnostics laboratories with a state-of-the-art AI platform to improve clinical trials and clinical decision-making.

Read More