HIV protein function that slows migration of T cells also improves viral survival

Medical Xpress | January 10, 2019

A study from a Massachusetts General Hospital (MGH) research team has identified the specific function of a protein found in HIV and related viruses that appears to slow down viral spread in the earliest stages of infection. But they also found that, after initially slowing down the spread of infection, that function may help the virus survive later on by evading the immune response. Their report has been published in Cell Host & Microbe.
"HIV uses several proteins with a number of functions predicted to change the migratory patterns of infected cells," says Thorsten Mempel, MD, Ph.D., of the MGH Center for Immunology and Inflammatory Diseases, senior author of the report. "Our investigation identified a particular function of the protein Nef as responsible for disrupting the ability of infected T cells to migrate, slowing the rate at which the virus initially spreads after infection. However, that same function allowed the virus to persist at a later time when the adaptive immune response—especially the response of cytotoxic 'killer' T cells—has become activated. These findings suggest that this function of Nef evolved to help HIV evade the immune response but at the expense of initially slower spread in an infected animal."

Spotlight

GMOs, or more accurately called Genetic Engineering (GE), builds on traditional plant cross breeding by allowing a more precise way to identify and transfer selected genes from one plant to another to create a desired characteristic. It’s used to address agricultural challenges, and increasingly to provide direct consumer benefits.

Spotlight

GMOs, or more accurately called Genetic Engineering (GE), builds on traditional plant cross breeding by allowing a more precise way to identify and transfer selected genes from one plant to another to create a desired characteristic. It’s used to address agricultural challenges, and increasingly to provide direct consumer benefits.

Related News

MEDICAL

Moderna Announces Supply Agreement with UK Government for Additional 2 Million Doses of mRNA-1273, Moderna’s Vaccine Candidate Against Covid-19

Moderna | November 30, 2020

Moderna, Inc., a biotechnology organization pioneering messenger RNA (mRNA) therapeutics and vaccines to make new generation of transformative medicines for patients, today reported a supply agreement with the UK government for an extra 2 million doses of mRNA-1273, Moderna's vaccine candidate against COVID-19, to the United Kingdom starting in March 2021. The UK government has now made sure about 7 million dosages of mRNA-1273. This confirmation comes as the UK proceeds with its efforts to secure access to safe and effective COVID-19 vaccines by establishing a broad portfolio of the most promising vaccines. On November 16, Moderna reported that the autonomous, NIH-appointed Data Safety Monitoring Board (DSMB) for the Phase 3 investigation of mRNA-1273, its vaccine candidate against COVID-19, has informed Moderna that the trial has met the statistical criteria pre-specified in the study protocol for efficacy, with a vaccine efficacy of 94.5%. This study, known as the COVE study, enrolled more than 30,000 participants in the U.S. and is being conducted in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), and the Biomedical Advanced Research and Development Authority (BARDA), part of the Office of the Assistant Secretary for Preparedness and Response at the U.S. Department of Health and Human Services.

Read More

INDUSTRIAL IMPACT

Omega Therapeutics Announces Strategic Research Collaboration with Stanford University School of Medicine

Omega Therapeutics, Inc | October 14, 2021

Omega Therapeutics, Inc. ("Omega"), a development-stage biotechnology company pioneering the first systematic approach to use mRNA therapeutics as programmable epigenetic medicines by leveraging its OMEGA Epigenomic Programing™ platform, today announced a strategic research collaboration with researchers at the Stanford University School of Medicine to explore the therapeutic potential of Omega Epigenomic Controllers (OECs) to control ocular disease genes associated with inflammation or regeneration of ocular tissues. Under the terms of the collaboration, Omega and members of the Ophthalmology Department of Stanford University School of Medicine will use the OMEGA Epigenomic Programming platform to discover and research novel ocular targets for potential future OEC development candidates. Albert Wu, M.D., Ph.D., FACS, Associate Professor of Ophthalmology, will serve as principal investigator. Other contributors will include Jeffrey Goldberg, M.D., Ph.D., Professor and Chair of Ophthalmology, and Michael Kapiloff, M.D., Ph.D., Associate Professor (Research) of Ophthalmology. "Through this research collaboration, we aim to expand the reach of our OMEGA platform within regenerative medicine, immunology, and inflammation with ocular disease targets. We will continue exploration of the broad potential of our disruptive platform and OECs, our new class of mRNA therapeutics as programmable epigenetic medicines." Mahesh Karande, President and Chief Executive Officer of Omega Therapeutics About Omega Therapeutics Omega Therapeutics is a development-stage biotechnology company pioneering the first systematic approach to use mRNA therapeutics as programmable epigenetic medicines by leveraging its OMEGA Epigenomic Programming™ platform. The OMEGA platform harnesses the power of epigenetics, the mechanism that controls gene expression and every aspect of an organism's life from cell genesis, growth and differentiation to cell death. The OMEGA platform enables control of fundamental epigenetic processes to correct the root cause of disease by returning aberrant gene expression to a normal range without altering native nucleic acid sequences. Omega's engineered, modular, and programmable mRNA-encoded epigenetic medicines, Omega Epigenomic Controllers™, target specific intervention points amongst the thousands of mapped and validated novel DNA-sequence-based epigenomic loci to durably tune single or multiple genes to treat and cure disease through Precision Genomic Control™. Omega is currently advancing a broad pipeline of development candidates spanning a range of disease areas, including oncology, regenerative medicine, multigenic diseases including immunology, and select monogenic diseases.

Read More

INDUSTRIAL IMPACT

Novo Holdings Leads US$21M Series A Financing in BIOMILQ

Novo Holdings | October 21, 2021

BIOMILQ is developing a novel infant feeding option, derived from human mammary cells, to better meet infants' nutritional needs and with a lower carbon footprint than traditional bovine-based infant formula. Earlier this year, BIOMILQ announced it had successfully produced a milk product with many of the same macronutrients that are known to be abundantly present in breastmilk in its lab based in Research Triangle Park in North Carolina, US. In the US, it is estimated that 75%1 of women are unable to exclusively breastfeed for the six months after birth as recommended by the American Academy of Pediatrics and the World Health Organization. Breastfeeding can be difficult due to latching issues, birth complications, discomfort or pain, exhaustion, inadequate milk supply, amongst other reasons. Alternative supplements, such as bovine-based infant formula, can lack the nutritional and bioactive composition found in breast milk. BIOMILQ's technology and solutions can be transformative in the field of infant nutrition, a market with a significant need for innovation. "Our mission is to make a growing and positive impact on health, science and society. We are delighted to support BIOMILQ through its journey pioneering mammary biotechnology. Its products have the potential to disrupt the infant supplemental feeding industry. We aim to use our scientific knowledge, operational expertise and global network to further strengthen the Company's ability to improve lives. Kartik Dharmadhikari, Partner at Novo Groand BIOMILQ Board Director Michelle Egger, Chief Executive Officer and Co Founder of BIOMILQ, added: "We are very pleased to have such experienced investors in our Series A financing. Novo Holdings, as a leading international life science investor, lends significant market experience and technical knowhow to BIOMILQ's mission to nourish healthier infants, empower parents through choice, and contribute to a healthier planet. The investor syndicate was led by Novo Holdings, with participation from Breakthrough Energy Ventures, Blue Horizon, Spero Ventures, Digitalis Ventures, Green Generation Fund and Gaingels. About Novo Holdings A/S Novo Holdings A/S is a private limited liability company wholly owned by the Novo Nordisk Foundation. It is the holding company of the Novo Group, comprising Novo Nordisk A/S and Novozymes A/S, and is responsible for managing the Novo Nordisk Foundation's assets. Novo Holdings is recognized as a leading international life science investor, with a focus on creating long-term value. As a life science investor, Novo Holdings provides seed and venture capital to development-stage companies and takes significant ownership positions in growth and well-established companies. Novo Holdings also manages a broad portfolio of diversified financial assets. Further information. About BIOMILQ BIOMILQ's mission is to close the nutritional gap between infant feeding options. In June 2021, BIOMILQ announced its capability of producing a milk product, derived from human mammary cells, that has macronutrient profiles that closely match the expected types and proportions of proteins, complex carbohydrates, fatty acids and other bioactive lipids that are known to be abundantly present in breastmilk. 1 "Breastfeeding Among U.S. Children Born 2011–2018, CDC National Immunization Survey." Centers for Disease Control

Read More