MEDICAL

GT Biopharma Announces FDA Data - GTB-3550, for Treatment of High-risk Myelodysplastic Syndromes

GT Biopharma | December 23, 2020

GT Biopharma, Inc. (OTCQB: GTBP) (GTBP.PA) an immuno-oncology organization focused in on innovative treatments dependent on the Company's restrictive NK cell engager (TriKE™) innovation stage is satisfied to report the introduction of extra interval information results for the Company's lead therapeutic competitor, GTB-3550, for the treatment of high-risk myelodysplastic syndromes (HR-MDS).

Erica Warlick, M.D, Principal Investigator for the GTB-3550 clinical trial, introduced extra clinical data results with the treatment with HR-MDS persistent #7 of its TriKE™ GTB-3550 during the Q&A meeting following her introduction at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition.

Mr. Anthony Cataldo, the Chairman and Chief Executive Officer of GT Biopharma commented, "Our clinical data demonstrates that our proprietary TriKE™ (CD16/IL15/CD33), safely activated and harnessed the patient's native NK cell's cancer killing ability in a target-directed fashion without side effects. Which is not the case with highly expensive and intrusive supplemental NK cell therapies. We look forward to progressing to the next level."

Spotlight

The news was full of CRISPR developments in 2015. New insights into the structures and mechanisms of CRISPR systems were reported. New tools and techniques were introduced. And new applications were explored. The newest CRISPR developments usually appear in peer-reviewed studies that emphasize incremental improvements. These studies tend to be highly focused and technically oriented, and hence fairly narrow. Taken as a whole, however, CRISPR studies form a broad and steadily advancing front, as this ebook demonstrates.

Spotlight

The news was full of CRISPR developments in 2015. New insights into the structures and mechanisms of CRISPR systems were reported. New tools and techniques were introduced. And new applications were explored. The newest CRISPR developments usually appear in peer-reviewed studies that emphasize incremental improvements. These studies tend to be highly focused and technically oriented, and hence fairly narrow. Taken as a whole, however, CRISPR studies form a broad and steadily advancing front, as this ebook demonstrates.

Related News

MEDICAL

CellCarta expands it proteomics portfolio with the acquisition of next-generation immuno-MRM assays from Precision Assays

CellCarta | May 23, 2022

CellCarta, a leading global provider of precision medicine laboratory services, announced today the acquisition of the commercial rights to the antibody panels and assays from Precision Assays, a leader in next-generation targeted proteomics testing solutions. A spin-off from Fred Hutchinson Cancer Center ("Fred Hutch"), Precision Assays develops and deploys high-end multiplex quantitative immuno-MRM mass spectrophotometry-based assays for its pharmaceutical and biotech industry clients. The acquisition from Precision Assays of its large spectrum of targeted mass spectrometry assays characterized according to the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) Tier 2 guidelines greatly expands CellCarta's capabilities in off-the-shelf multiplex protein quantification offerings ready for deployment in immuno-oncology clinical and pre-clinical studies. Precision Assays' large portfolio of robust assays characterized according to CPTAC guidelines and its established proof of concept data will enable CellCarta to confidently support its clients' exploratory studies and therapeutic development strategies, offering them key solutions to address important clinical challenges and move their immuno-oncology programs forward. Given CellCarta's expertise in protein quantitation, these immuno-MRM panels can further be validated to support secondary and primary clinical endpoints." Lorella Di Donato, Chief Operating Officer of CellCarta, Immunology and Proteomics Divisions. Based on technology licensed from Fred Hutch, Precision Assays' platform is uniquely positioned to fully capture the unique advantages of multiplex protein quantification using targeted mass spectrometry. Founder Dr. Amanda Paulovich, a professor in the Clinical Research Division at Fred Hutch who holds the Aven Foundation Endowed Chair, is an internationally recognized pioneer in targeted mass spectrometry and a clinically trained oncologist. Dr. Paulovich has set best-in-class standards to support precision medicine studies in cancer-specific protein expression analysis in a variety of matrices from FFPE cancer tissue biopsies to clinical serum-based samples. Precision Assays is one of the few CROs to offer large and immuno-oncology relevant multiplex off-the-shelf panels and is at the forefront of targeted-mass spec proteomics-based research. As a global CRO with expertise in targeted mass spectrometry and specializing in biomarker testing to support precision medicine, CellCarta is an ideal partner to deploy and industrialize our platform to support discovery, translational and clinical research, especially in precision medicine and immuno-oncology." Paulovich About CellCarta CellCarta is a leading provider of specialized precision medicine laboratory services to the biopharmaceutical industry. Leveraging its integrated analytical platforms in immunology, histopathology, proteomics and genomics, as well as related specimen collection and logistics services, CellCarta supports the entire drug development cycle, from discovery to late-stage clinical trials. The company operates globally with 11 facilities located in Canada, USA, Belgium, Australia, and China.

Read More

INDUSTRIAL IMPACT

McMaster, Sartorius Stedim Biotech team up to advance biomanufacturing processes with next-gen tech

Sartorius Stedim Biotech S.A | August 23, 2021

Sartorius Stedim Biotech, a leading international partner of the biopharmaceutical industry, has entered into a partnership with McMaster University to improve manufacturing processes of antibody and virus-based treatments for diseases such as COVID-19, cancers, and genetic disorders. Using a state-of-the-art multi-column chromatography system provided by Sartorius Stedim Biotech, the McMaster team will "perfect" a process for the purification of therapeutic viruses that is more effective and cheaper than those currently available. This will pave the way for new and more affordable treatments to reach patients with a variety of needs. "Teaming up with Sartorius Stedim Biotech is an exciting opportunity for McMaster Engineering. This research will push the envelope in leading advanced, cutting-edge research in bio-manufacturing," says John Preston, associate dean, research, innovation and external relations in the Faculty of Engineering. "Establishing industry-friendly, collaborative environments is critical in solving real-world problems." This work aims to support the Sustainable Development Goals (SDG) set out by the United Nations, designed to give our people and planet a better future. More effective bio-manufacturing can make advanced biotherapeutics cost-effective and available to more people globally. "This partnership with McMaster University will lead to impactful research that will make important treatments available at a greater scale. We see this as a way to expand our research development and bring SDG-aligned pharmaceuticals to Canadian and global markets," says Brandon Corbett, research scientist at Sartorius Stedim Biotech. David Latulippe, associate professor of Chemical Engineering, and Prashant Mhaskar, professor of Chemical Engineering and Canada Research Chair in Nonlinear and Fault-Tolerant Control, are leading this project with Sartorius Stedim Biotech. The collaboration will initially run for four years. What is chromatography? Chromatography is an essential purification technology in biomanufacturing. To produce biotherapeutics, scientists use a bioreactor with specialized cell lines and customized growth media. Next, the biotherapeutic must go through a series of purification steps, often with duplicate steps to satisfy the requirements of regulatory bodies. Sartorius Stedim Biotechs' multi-column chromatography system uses parallel processing strategies to make the process more resource and cost-efficient. "Our ultimate goal is to perfect the downstream chromatography process by combining detailed experimental work with advanced process modelling concepts," says Latulippe. "This way, we can control the outcome and fix the processes on site, as production is happening, so everything is always 'on spec'." Currently, monoclonal antibodies are the leading biotherapeutic being used to fight against COVID-19. Training the next generation As part of the partnership, Sartorius Stedim Biotech will provide student training opportunities at their research and development facilities in North America and Europe. Ian Gough, a graduate of McMaster's Chemical and Bioengineering program, has already started working on this project. Gough is a former member of the Summer Studentship Internship program from BioCanRx, a Networks of Centres of Excellence program. Claire Velikonja, a recent chemical engineering graduate from the University of Toronto, will join the team in September. Both Gough and Velikonja received a Canada Graduate Scholarship from Natural Sciences and Engineering Research Council of Canada (NSERC) to provide additional support for their first year of graduate studies. A profile of Sartorius Stedim Biotech Sartorius Stedim Biotech is a leading international partner of the biopharmaceutical industry. As a total solutions provider, the company helps its customers to manufacture biotech medications safely, rapidly and economically. Headquartered in Aubagne, France, Sartorius Stedim Biotech is quoted on the Eurolist of Euronext Paris. With its own manufacturing and R&D sites in Europe, North America and Asia and an international network of sales companies, Sartorius Stedim Biotech has a global reach. The Group has been annually growing by double digits on average and has been regularly expanding its portfolio by acquisitions of complementary technologies. In 2020, the company employed more than 7,500 people, and earned sales revenue of 1,910 million euros. About McMaster University Ranked among the world's top engineering schools, the Faculty of Engineering plays a significant role in helping McMaster University earn its reputation as one of Canada's most innovative universities. Our focus is on experiential, problem-based learning, and our interdisciplinary approach to collaboration results in smarter insights, groundbreaking ideas, and greater optimism. This approach is helping us create a Brighter World.

Read More

CELL AND GENE THERAPY

EXUMA Biotech Completes Series B2 to Advance Novel Cell & Gene Therapies

EXUMA Biotech Corp. | December 22, 2021

EXUMA Biotech, Corp., a clinical-stage biotechnology company discovering and developing cell and gene therapies and delivery solutions for liquid and solid tumors, announced the completion of a $41 million Series B2 financing. The Series B2 brings the total capital raised since its inception to approximately $130 million. Proceeds will be used to support further development of EXUMA's autologous subcutaneous rPOC CAR-TaNK platform for hematologic and solid tumors and continued clinical investigation of its Tumor Metabolism Regulated CAR technology targeting solid tumors. New investors in the Series B2 financing included Americo Life, Inc., in addition to existing investors. "We are pleased to expand our investor base with support from this strategic group of investors who recognize the potential of our technologies to translate into life-changing therapies for cancer patients," Gregory Frost, Ph.D., EXUMA Biotech Chairman and Chief Executive Offer "Dr. Holmes is a renowned cancer specialist who will make an outstanding addition to our board of directors. He has dedicated his life to researching advanced cellular and immunotherapy treatments for hematologic malignancies and to the education of the oncology community about these new modalities," said Frost. Houston Holmes, M.D., received a BS in medical microbiology from Stanford University School of Medicine, an MD from the University of Texas Southwestern Medical School, and an MBA from the University of Texas at Dallas. He completed an internship and residency in internal medicine at Baylor University Medical Center, and fellowship in medical oncology/hematology at the National Cancer Institute/National Heart, Lung, and Blood Institute. Dr. Holmes has been in practice for over 20 years. "It's an exciting time for cell and gene therapies. I'm thrilled to be a part of EXUMA and to join the company in its mission to advance innovative therapies towards the clinic and for cancer patients in urgent need of new treatments," said Houston Holmes, M.D. About EXUMA Biotech EXUMA Biotech is a clinical-stage biotechnology company pioneering the discovery and development of novel cellular therapies and gene delivery solutions for patients with cancer. The company leverages its global R&D footprint to discover, manufacture and develop gene delivery platforms and gene programs that may overcome the safety, efficacy, and scalability challenges of cellular therapies in solid tumor and hematologic malignancies. The company is headquartered in West Palm Beach.

Read More