Fungal Infection Leads to Brain Inflammation and Memory Impairment in Mice

Techonology Networks | January 07, 2019

Fungal infections are emerging as a major medical challenge, and a team led by researchers at the Baylor College of Medicine has developed a mouse model to study the short-term consequences of fungal infection in the brain. The researchers report in the journal Nature Communications the unexpected finding that the common yeast Candida albicans, a type of fungus, can cross the blood-brain barrier and trigger an inflammatory response that results in the formation of granuloma-type structures and temporary mild memory impairments in mice. Interestingly, the granulomas share features with plaques found in Alzheimer’s disease, supporting future studies on the long-term neurological consequences of sustained C. albicans infection. “An increasing number of clinical observations by us and other groups indicates that fungi are becoming a more common cause of upper airway allergic diseases such as asthma, as well as other conditions such as sepsis, a potentially life-threatening disease caused by the body's response to an infection,” said corresponding author Dr. David B. Corry, professor of medicine-immunology, allergy and rheumatology and Fulbright Endowed Chair in Pathology at Baylor College of Medicine.

Spotlight

The technology has wowed the field by all but obliterating some patients’ blood cancers, but solid malignancies present new challenges.

Spotlight

The technology has wowed the field by all but obliterating some patients’ blood cancers, but solid malignancies present new challenges.

Related News

Bioclinica Announces That It Will Leverage Bioclinica's Interactive Response Technology (IRT) for Their EXIT COVID-19 Study

Bioclinica | September 10, 2020

Bioclinica, an integrated solutions provider of clinical life science and technology expertise, delivering powerful insight into clinical trial development in bringing new therapies to people worldwide, announced today that Direct Biologics, a market leading innovator and science-based manufacturer of regenerative products, will leverage Bioclinica's Interactive Response Technology (IRT) for their EXIT COVID-19 study — a multi-center FDA phase II clinical trial for the use of ExoFlo™ to treat COVID-19 acute respiratory distress syndrome (ARDS). "We are a dynamic and innovative biotechnology company that can engage synergistically with vendor partners who are willing and able to match our speed and adaptability in our efforts to deliver solutions for highly complex and pressing real world problems," said Dr. Vik Sengupta, Chief Medical Officer of Direct Biologics. "Bioclinica's ability to rapidly configure their highly robust and functional IRT made them the natural choice to meet our accelerating timeline in the fight against COVID-19. The Bioclinica team rose to the occasion, scaling with demand, and accommodating our specific randomization and supply chain requirements." Bioclinica's IRT is the industry's only system that provides advanced visibility to working study prototypes within just a few days - letting you build, implement, test, and deploy new protocols in as little as two to three weeks, with or without customization.

Read More

CELL AND GENE THERAPY

Sphere Fluidics Closes a $40 Million Funding Round Led by Sofinnova Partners and Redmile Group

Sphere Fluidics | October 29, 2021

Sphere Fluidics, a company that has developed and is commercialising single cell analysis systems underpinned by its proprietary picodroplet technology, announced today that it has closed a $40 million investment round. The round was led by Sofinnova Partner and Redmile Group investing on equal terms. Sphere Fluidics will use the funding to enable the expansion of the Company’s international sales activities in key markets and improving its support for customers. Furthermore, it will expand its product research and development programs, including novel applications for its proprietary Cyto-Mine® Single Cell Analysis System. The Cyto-Mine is an automated cost-effective platform which integrates single cell screening, sorting, dispensing, imaging, and clone verification and has been purchased by an international customer base including global pharmaceutical companies, biotech, CDMOs, and leading research institutions. The platform can process millions of samples per day, assessing and isolating rare or valuable cell variants or biological products, to simplify and improve throughput across antibody discovery, cell line development and single cell diagnostics. The funds raised will support ongoing commercialization, broadening the technology’s adoption into new, innovative research areas such as cell therapy, synthetic biology and genome editing, in addition to ongoing enhancements of the platform’s capabilities and performance. In conjunction with the financing, Sofinnova’s Tom Burt and Redmile Group’s Rob Faulkner will join the Board. “This is a transformational investment from two of the most respected specialist investment funds in the industry and a recognition of the untapped potential of the pioneering product and market development carried out by the Company to date. Andrew Mackintosh, Chairman of Sphere Fluidics Frank Craig, CEO, Sphere Fluidics, commented: “This funding round is not only testament to the potential of Sphere Fluidics’ single cell analysis technology, but also to the expertise of our team. The investment will underpin our growth strategy, enabling us to expand both our product range and our support to new and existing customers, globally. Tom Burt, Partner, Sofinnova Partners, commented: “We remain impressed by Cyto-Mine’s high-throughput, ease-of-use and accessible cost. In the growing markets of monoclonal antibody discovery, cell line development and cell therapy, we see a significant need for such an affordable and reliable single cell analysis system as Cyto-Mine, capable of performing multiple assays on tens of millions of individual cells per run.”

Read More

CELL AND GENE THERAPY

Evonetix Demonstrates Novel Enzymatic DNA Synthesis Method

EVONETIX LTD | March 02, 2022

EVONETIX LTD the synthetic biology company bringing semiconductor technology to DNA synthesis, announced it has achieved enzymatic DNA synthesis capability with its proprietary, thermally controlled synthesis chemistry. The culmination of a three-year development program, supported by Innovate UK and in collaboration with Durham University, the results demonstrate that Evonetix’s unique, semiconductor array-based platform is compatible with both chemical and enzymatic DNA synthesis, enabling the production of scarless DNA sequences that are directly compatible with downstream processing. Synthetic biology is expected to impact many industries, but the production of high-fidelity DNA at scale, without the need for post-synthesis error correction, has remained a challenge. Evonetix‘s unique approach re-engineers traditional phosphoramidite synthesis chemistry to use thermal, rather than acidic, control of deprotection reactions. This approach enables parallel synthesis of thousands of sequences on a single chip. The research was directed by Dr Raquel Sanches-Kuiper, VP of Technology at Evonetix, whose enzyme engineering team has focussed on the development of enzymes that can incorporate Evonetix modified nucleotides efficiently. The programme was completed in collaboration with Dr David Hodgson, Associate Professor of Chemistry at Durham University, whose group was involved in developing the modified nucleotides for enzymatic synthesis in Evonetix silicon arrays. “We have, for the first time, demonstrated thermally controlled enzymatic DNA synthesis. Our approach brings together thermally controlled synthesis and error detection, allowing for high-throughput assembly of high-fidelity gene-length DNA at scale. Our synthesis platform can now be used with both enzymatic and chemical synthesis, allowing us to smoothly integrate our enzymatic approach as this technology develops. Our unique, on-chip, synthesis and error correction platform will overcome many of the existing challenges in current approaches to de novo gene synthesis.” Dr Raquel Sanches-Kuiper, VP of Technology at Evonetix Dr David Hodgson, Associate Professor of Chemistry at Durham University, added: “We have been able to combine our world leading expertise in nucleotide chemistry with the novel Evonetix approach for enzymatic DNA synthesis, enabling cleaner, simpler synthesis reactions that will ultimately allow for scaled production of high-quality synthetic DNA with revolutionary applications across industry and research.” Simon Rowland, Innovate UK, commented “Engineering Biology was identified in the 2021 UK Innovation Strategy as one of the key technologies that will deliver future economic success in the UK. The rapidly growing synthetic biology market is estimated to reach $40 billion by the mid-2020s. Innovate UK supports businesses and research institutions to drive business investment into R&D and is proud to have supported Evonetix and the development of this game changing innovation in DNA synthesis.”

Read More