MEDICAL

Entopsis Exploring Strategic Alternatives for its OpsisDx™ Platform

Berkery, Noyes & Co. | October 08, 2021

Entopsis, Inc., the developer of an unbiased approach to diagnostics using bio-molecular signatures with a focus on oncology, announced that it has engaged Berkery Noyes & Co. as its financial advisor to assist the company in pursuing strategic alternatives for their OpsisDxTM platform.

OpsisDxTM is a urine-based technology platform that shifts the focus away from conventional RNA and DNA approaches, offering a highly sensitive and specific diagnostic test for the detection of early-stage cancers. Its IP-protected platform detects urine chemical signatures via a proprietary array, achieving clinically significant results through its proprietary machine learning algorithms. Validation studies on OpsisDxTM have initially focused on detecting early-stage cancers, and the platform has now expanded to detecting multiple other diseases in a highly scalable fashion.

Now is the time to launch OpsisDxTM. There's greater acceptance of multi-disease testing platforms from a scientific, regulatory and business perspective; the industry as a whole has crossed the tipping point, We are seeking an established partner who shares our vision of empowering people with actionable, low costs and accurate healthcare information with an eye towards the long-term interests of Entopsis.

- Obdulio Piloto, CEO of Entopsis Inc.
 
About Entopsis, Inc.,
Entopsis utilizes a proprietary material science screening platform to develop cost-effective and impactful products.

Spotlight

Many biological samples are composed of mixtures of physiologically different cell types. These include stem cell cultures, tumor samples, and blood.Understanding the genetic makeup of a subpopulation within these samples may provide valuable clues about the characteristics of the sample and, by extension, the organism. For example, identifying and characterizing rapidly growing subpopulations within a tumor may reveal the metastatic potential of the cancer.

Spotlight

Many biological samples are composed of mixtures of physiologically different cell types. These include stem cell cultures, tumor samples, and blood.Understanding the genetic makeup of a subpopulation within these samples may provide valuable clues about the characteristics of the sample and, by extension, the organism. For example, identifying and characterizing rapidly growing subpopulations within a tumor may reveal the metastatic potential of the cancer.

Related News

CELL AND GENE THERAPY

iTolerance to Collborate with LyGenesis for Joint Research

iTolerance | July 01, 2022

iTolerance, Inc., an early-stage privately held regenerative medicine company developing technology to enable organoid, tissue, and cell therapy, announced entering into a joint collaboration with LyGenesis, Inc., a clinical-stage biotechnology company with an organ regeneration technology platform. The joint collaboration is aimed at evaluating the potential of iTOL-201, a product candidate being developed combining LyGenesis' LYG-LIV-100 liver cell therapy and iTolerance's SA FasL microgel immune tolerance platform to permit the growth of ectopic livers without the requirement for immune suppression. The joint research effort of iTolerance and LyGenesis has produced in vitro data using iTOL-201 and is now moving toward small animal proof of concept work to assess the potential of the combined technology for producing ectopic livers capable of saving the animals from fatal liver disorders without the requirement for immune suppression. With our lead therapy now in the clinic in a Phase 2a trial in patients with End Stage Liver Disease, we have turned our attention toward a second-generation therapy capable of growing ectopic organs without the need for immune suppression. iTolerance's platform holds enormous promise in this respect and we look forward to the results from our joint proof of concept work." Dr. Michael Hufford, Co-Founder and Chief Executive Officer of LyGenesis. While long-term immunosuppression continues to be an obstacle for the use of cell and regenerative therapies, the research being conducted between both LyGenesis and iTolerance could allow for a major advancement in organ regeneration, As we advance our own pipeline of therapies focused on supporting pancreatic islet engraftments, I believe this synergistic collaborative research with LyGenesis has the potential to successfully combine technologies to drive significant value for both biotech companies and importantly, the patients we work to serve." Dr. Anthony Japour, Chief Executive Officer of iTolerance.

Read More

INDUSTRIAL IMPACT

SIGA Announces Oncology Collaboration with KaliVir Immunotherapeutics

SIGA Technologies Inc. | July 16, 2022

SIGA Technologies, Inc. a commercial-stage pharmaceutical company focused on the health security market, today announced a collaboration with KaliVir Immunotherapeutics to make TPOXX® available for use with KaliVir’s proprietary oncolytic vaccinia immunotherapy platform. This novel oncolytic platform includes multiple proprietary genetic modifications that can be combined to generate a unique oncolytic virus that has been optimized for systemic delivery and anti-tumor immune stimulation. Under this partnership, SIGA is providing its TPOXX oral capsules to support future clinical programs. “KaliVir is an innovator in the creation of oncolytic viral immunotherapies, and we are excited to enter into this collaboration with them. TPOXX is a powerful antiviral drug to vaccinia and allows the safe use of higher doses of vaccinia vectors; there is also the potential it could increase immunotherapeutic outcomes. This collaboration helps bring new levels of assurance to physicians, regulators, and especially patients receiving these promising investigational therapies.” Dr. Phil Gomez, CEO of SIGA “We are pleased to announce this collaboration with SIGA Technologies,” said Helena Chaye, Ph.D., J.D., CEO of KaliVir. “Pairing oncolytic immunotherapies with an effective antiviral agent is a critical part of the development of new treatments, and we look forward to enhancing our groundbreaking oncolytic immunotherapy programs with the support of SIGA’s TPOXX.” On July 13, 2018, the U.S. Food and Drug Administration (FDA) approved oral TPOXX for the treatment of smallpox to mitigate the impact of a potential outbreak or bioterror attack. In preclinical studies, TPOXX has been shown to be active against most orthopoxviruses, including vaccinia The unique mechanism of action of TPOXX coupled with published efficacy in animal studies, make it an important addition to development programs focused on vaccinia-based cancer therapies. In 2020, SIGA entered into numerous collaborations, including a partnership with Turnstone Biologics to supply TPOXX to support Turnstone’s clinical oncolytic vaccinia immunotherapy programs. In 2021, SIGA entered into a preclinical research collaboration with Bioarchitech to investigate TPOXX enabling higher doses of vaccinia vectors when used in combination with Bioarchitech’s oncolytic vaccinia-based immunotherapy platform. ABOUT SIGA TECHNOLOGIES, INC. and TPOXX® SIGA Technologies, Inc. is a commercial-stage pharmaceutical company focused on the health security market. Health security comprises countermeasures for biological, chemical, radiological and nuclear attacks (biodefense market), vaccines and therapies for emerging infectious diseases, and health preparedness. Our lead product is TPOXX®, also known as tecovirimat and ST-246®, an orally administered and IV formulation antiviral drug for the treatment of human smallpox disease caused by variola virus. TPOXX is a novel small-molecule drug and the US maintains a supply of TPOXX under Project BioShield. The oral formulation of TPOXX was approved by the FDA for the treatment of smallpox in 2018. The full label is available by clicking here. Oral tecovirimat received approval from the European Medicines Agency (EMA) in 2022. The EMA approval includes labeling for oral tecovirimat indicating its use for the treatment of smallpox, monkeypox, cowpox, and vaccinia complications following vaccination against smallpox. The full label is available by clicking here. In September 2018, SIGA signed a contract with the Biomedical Advanced Research and Development Authority (BARDA), part of the office of the Assistant Secretary for Preparedness and Response within the U.S. Department of Health and Human Services, for additional procurement and development related to both oral and intravenous formulations of TPOXX. ABOUT KALIVIR IMMUNOTHERAPEUTICS. KaliVir Immunotherapeutics is a privately held biotech company developing cutting-edge, next-generation oncolytic viral immunotherapy programs. The company has developed a unique vaccinia virus-based platform that can generate potent novel oncolytic vaccinia viruses with modifications to maximize viral replication and to enhance intravenous delivery and spread (Vaccinia Enhanced Template “VET” Platform). VET™ platform utilizes the large transgene capacity of the vaccinia virus to deliver therapeutics matched to tumor immunophenotypes to stimulate patients’ immune systems and modify the tumor microenvironment. KaliVir’s oncolytic product candidates are designed to be safe, potent and systemically deliverable to treat cancer patients across multiple tumor types. KaliVir is in the process of advancing multiple therapeutic candidates toward the clinic.

Read More

MEDICAL

SOPHiA GENETICS Launches New Solution to Advance Chronic Lymphocytic Leukemia Care, in Collaboration with IDIBAPS

biotech, biotechnology, cell, gene, tissue | June 10, 2022

SOPHiA GENETICS (Nasdaq: SOPH), the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) of Barcelona, and the Spanish Diagnóstica Longwood today announced from the European Hematology Association Congress in Vienna that they have combined their expertise to develop a new Chronic Lymphocytic Leukemia (CLL) solution to advance CLL care. This collaboration will unify the wide variety of current guideline recommendations into one single application aiming to improve CLL characterization and CLL research practices in Iberia. SOPHiA GENETICS has already facilitated the analysis of one million genomic profiles through the SOPHiA DDM™ Platform, including a significant amount of onco-hematological-related diseases such as acute myeloid leukemia and lymphomas. The Platform computes a wide array of genomic variants needed to continually hone machine learning algorithms designed to accurately detect rare and challenging cases. The growing number of users of the SOPHiA DDM™ community can share and access insights by pulling the relevant signals detected from the noise, ultimately saving time and helping to make better-informed decisions. The new CLL solution allows for progress of Chronic Lymphocytic Leukemia research using genomic analysis. This could lead to better detection of the disease, which accounts for 25-30% of all leukemia cases in Western countries and affects yearly more than 100,000 people globally[1], and ultimately improve patient care. Thanks to the SOPHiA DDM™ Platform and IDIBAPS, hematopathologists can now access guidelines for the mutational status of TP53, immunoglobulin (IG) gene rearrangements and their somatic hypermutation status, while benefitting from the identification of 23 CLL-specific genes for SNVs, InDels and CNVs including NOTCH1, SF3B1, ATM, IGLV3-21, BTK, PLCG2, BCL2, del13q14, and trisomy 12, all in one single NGS workflow. The new CLL solution has already been used in routine in Spain, with further opportunities throughout the country, and in Latin America through Diagnóstica Longwood's distribution channels. We are proud to work together with some of the most renowned experts in the field of Chronic Lymphocytic Leukemia research around the world. This partnership is a great example of how combining advanced data analytics with emerging CLL strategies can move the possibilities of data-driven medicine forward." Lara Hashimoto, Chief Business Officer at SOPHiA GENETICS. It is a great satisfaction to see how thanks to the partnership with SOPHiA GENETICS and Diagnóstica Longwood we will be able to transfer into clinical practice the relevant information generated for so many years in the research of CLL using a simple and robust assay." Elías Campo, principal investigator and director of IDIBAPS. About SOPHiA GENETICS SOPHiA GENETICS (Nasdaq: SOPH) is a healthcare technology company dedicated to establishing the practice of data-driven medicine as the standard of care and for life sciences research. It is the creator of the SOPHiA DDM™ Platform, a cloud-based SaaS platform capable of analyzing data and generating insights from complex multimodal data sets and different diagnostic modalities. The SOPHiA DDM™ Platform and related solutions, products and services are currently used by more than 790 hospital, laboratory, and biopharma institutions globally. About IDIBAPS The August Pi i Sunyer Biomedical Research Institute (IDIBAPS) is a biomedical research center of excellence that addresses the most common diseases in our environment. It is a public consortium comprising the Catalan Government (Generalitat de Catalunya), the Hospital Clínic Barcelona, the Faculty of Medicine and Health Sciences at the University of Barcelona and the CSIC Institute of Biomedical Research of Barcelona. About 1,500 professionals are organized in a hundred research groups. IDIBAPS undertakes translational research. It focuses on ensuring that the questions that arise at the patient's bedside have a response in the laboratory, and that advances made in the laboratory are promptly applied to patients. With over 1,200 articles published annually, it is the leading biomedical research center in Spain.

Read More