Cancer Immunotherapy Resistance Due to Metabolic Imbalance

GEN | September 26, 2019

Immunotherapy has been a boon to those suffering from severe cancers. The science has been so transformative that just last year, three pioneering researchers won the Nobel Prize for their discoveries in the underlying immunological mechanisms that make immunotherapy drugs possible. Though for as much success as these interventions have had, there is still a segment of the population that is resistant to the drugs and their beneficial effects, and unfortunately, scientists have had difficulties nailing down the reasons why. However now, investigators at the Dana-Farber Cancer Institute, in conjunction with researchers at the Broad Institute of MIT and Harvard, have discovered that a metabolic imbalance in some cancer patients following treatment with a checkpoint inhibitor drug, nivolumab, is associated with resistance to the immunotherapy agent and shorter survival. The chemical change, which the investigators say reflects an “adaptive resistance mechanism” by cancer cells or the immune system in response to treatment with the PD-1 antibody-drug nivolumab, was linked to worse survival in patients with advanced melanoma and kidney cancer. The greater the change—the conversion of the amino acid tryptophan to a metabolite called kynurenine—the larger the impact on survival.

Spotlight

Broken heart syndrome, also called stress-induced cardiomyopathy or takotsubo cardiomyopathy, can strike even if you're healthy. (Tako tsubo, by the way, is octopus traps that resemble the pot-like shape of the stricken heart.)

Spotlight

Broken heart syndrome, also called stress-induced cardiomyopathy or takotsubo cardiomyopathy, can strike even if you're healthy. (Tako tsubo, by the way, is octopus traps that resemble the pot-like shape of the stricken heart.)

Related News

CELL AND GENE THERAPY

NeuExcell Therapeutics and Spark Therapeutics Announce Research Collaboration Agreement to Develop a Novel Gene Therapy for Huntington's Disease

NeuExcell Therapeutics | September 13, 2021

NeuExcell Therapeutics and Spark Therapeutics, a member of the Roche Group announced a gene therapy collaboration aimed at developing a safe and effective treatment for patients suffering from Huntington's Disease (HD). Under the terms of the agreement, Spark Therapeutics will receive access to NeuExcell's proprietary neuro-regenerative gene therapy platform and capabilities. NeuExcell's research team will collaborate closely with Spark Therapeutics to advance the program. Under the Option License NeuExcell is eligible to receive upfront, license fees, R&D and Sales milestone payments up to approximately $190 million plus product royalties. Under this Agreement, Spark Therapeutics has the option to license the exclusive worldwide rights of the NeuExcell's HD program. The prevailing assumption has been that mammalian adult neurons cannot be replaced, and so therapeutic approaches for brain diseases tend to focus on slowing disease progress. NeuExcell Therapeutics may have unlocked the method for regenerating neural tissue. The company's neuroregenerative gene therapy platform is built around transcription factor-based trans-differentiation technology. The platform seeks to reprogram endogenous glial cells like astrocytes, which surround neurons and are often reactive after neurons are injured or die, into functional new neurons. While neurons cannot divide to regenerate themselves, glial cells are a renewable source for generating new neurons at the site of injury, and at the scale needed to have a meaningful therapeutic impact. NeuExcell is developing adeno-associated viruses (AAVs)-based neuroregenerative gene therapy to regenerate functional new neurons at the site of the neurodegeneration. "At Spark, we understand that in order to break down barriers for people and families affected by genetic diseases, we need to work with like-minded partners that can integrate innovative technologies with our advanced proprietary AAV vector platform," said Joseph La Barge, Chief Business Officer of Spark Therapeutics. "Using our existing expertise in gene therapy development and NeuExcell's neuro-regenerative gene therapy research and capabilities, together we can progress the potential of gene therapy for patients living with Huntington's Disease." Spark Therapeutic's advanced proprietary AAV vector platform targeted to the central nervous system offers the HD research and development (R&D) program a major advantage. At the forefront of gene therapy research for more than two decades, Spark Therapeutics has extensive knowledge and capabilities in this field that it will use to bring the HD program forward. About Huntington's Disease HD is an incurable, hereditary brain disorder caused by a single defective gene on chromosome 4. As the disease affects different parts of the brain, it impacts movement, behavior, and cognition. It becomes harder to walk, think, reason, swallow, and talk. Eventually, the person will need full-time care. The complications associated with HD are usually fatal. About NeuExcell Therapeutics. NeuExcell is a privately held early-stage gene therapy company headquartered in Pennsylvania, USA. Its mission is to improve the lives of patients suffering from neuro-degenerative diseases and CNS injuries. Based upon the scientific work of Prof. Gong Chen (Co-Founder and Chief Scientific Advisor), the Company has developed a potentially disruptive neural repair technology through in vivo astrocyte-to-neuron conversion by introducing neural transcription factors through adeno-associated virus (AAV)-based gene therapy. NeuExcell's pipeline covers major neurodegenerative diseases such as Stroke, Huntington's Disease, Amyotrophic Lateral Sclerosis (ALS), Alzheimer's Disease, Parkinson's Disease, Traumatic Brain Injury, Spinal Cord Injury, and Glioma. About Spark Therapeutics At Spark Therapeutics, a fully integrated, commercial company committed to discovering, developing and delivering gene therapies, we challenge the inevitability of genetic diseases, including blindness, hemophilia, lysosomal storage disorders and neurodegenerative diseases. We currently have four programs in clinical trials. At Spark, a member of the Roche Group, we see the path to a world where no life is limited by genetic disease.

Read More

CELL AND GENE THERAPY

BeiGene Initiates First-in-Human Phase 1 Clinical Trial of Investigational TYK2 Inhibitor BGB-23339

BeiGene | November 23, 2021

BeiGene a global, science-driven biotechnology company focused on developing innovative and affordable medicines, announced that the first patient has been dosed in a Phase 1 clinical trial of BGB-23339, a potent, allosteric investigational tyrosine kinase 2 (TYK2) inhibitor internally developed by BeiGene scientists. TYK2 is a member of the JAK family and functions as a critical mediator in cytokine signaling pathways implicated in multiple immune-mediated disorders, such as psoriasis and inflammatory bowel disease. BGB-23339 is a potent, highly selective, investigational TYK2 inhibitor targeting the regulatory pseudokinase (JH2) domain. “Discovered and developed by BeiGene, BGB-23339 is a highly selective, potent, allosteric TYK2 inhibitor that has shown promising activity in preclinical evaluation. Building on our proven track record in oncology, BeiGene is expanding its clinical focus to discover new modalities and platforms in areas of high unmet need, including inflammation and immunology, to bring innovative, impactful medicines to patients.” Lai Wang, Ph.D., Global Head of R&D at BeiGene The first-in-human Phase 1 trial (NCT05093270) is designed to evaluate the safety, tolerability, pharmacokinetics, and preliminary activity of BGB-23339. The trial is expected to enroll up to 115 healthy volunteers in Australia and/or China. In addition to its broad portfolio focused on hematological malignancies and solid tumors, BeiGene is applying its research excellence and clinical expertise to address inflammation and immunology, an area of high unmet medical need. BeiGene’s internally developed, highly selective next-generation BTK inhibitor BRUKINSA® (zanubrutinib) is currently being evaluated in a Phase 2 trial in patients with active proliferative lupus nephritis. About BGB-23339 BGB-23339 is a potent, highly selective, allosteric, investigational tyrosine kinase 2 (TYK2) inhibitor discovered and being developed by BeiGene. TYK2 is a member of the JAK family and functions as a critical mediator in cytokine signaling pathways implicated in multiple immune-mediated disorders. Designed to target the regulatory pseudokinase (JH2) domain on TYK2, BGB-23339 has demonstrated strong selectivity in preclinical studies with potent inhibition of interleukin (IL)-12, IL-23, and Type 1 interferons (IFNs)—pro-inflammatory cytokines that play a determinant role in the induction of inflammation. BGB-23339 is currently being evaluated in a Phase 1 clinical study. About BeiGene BeiGene is a global, science-driven biotechnology company focused on developing innovative and affordable medicines to improve treatment outcomes and access for patients worldwide. With a broad portfolio of more than 40 clinical candidates, we are expediting development of our diverse pipeline of novel therapeutics through our own capabilities and collaborations. We are committed to radically improving access to medicines for two billion more people by 2030. BeiGene has a growing global team of over 7,700 colleagues across five continents. Forward-Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws, including statements regarding plans for the Phase 1 trial and development of BGB-23339, the potential for BGB-23339 to address unmet medical needs, BeiGene’s plan to expand its clinical focus to discover new modalities and platforms in areas of high unmet need, including inflammation and immunology, and BeiGene’s plans, commitments, aspirations and goals under “About BeiGene”. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including BeiGene's ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; BeiGene's ability to achieve commercial success for its marketed medicines and drug candidates, if approved; BeiGene's ability to obtain and maintain protection of intellectual property for its medicines and technology; BeiGene's reliance on third parties to conduct drug development, manufacturing and other services; BeiGene’s limited experience in obtaining regulatory approvals and commercializing pharmaceutical products and its ability to obtain additional funding for operations and to complete the development and commercialization of its drug candidates and achieve and maintain profitability; the impact of the COVID-19 pandemic on the BeiGene’s clinical development, regulatory, commercial, and other operations, as well as those risks more fully discussed in the section entitled “Risk Factors” in BeiGene’s most recent quarterly report on Form 10-Q as well as discussions of potential risks, uncertainties, and other important factors in BeiGene's subsequent filings with the U.S. Securities and Exchange Commission. All information in this press release is as of the date of this press release, and BeiGene undertakes no duty to update such information unless required by law.

Read More

RESEARCH

Chemistry42, an AI System from Insilico, has been Incorporated into UCB's Drug Discovery Programmes

Insilico Medicine | March 15, 2021

Insilico Medicine, an AI drug discovery company, reported that UCB will incorporate Insilico's Chemistry42™ into UCB's inward drug discovery pipeline. UCB's initial appropriation of Insilico Medicine's restrictive innovation will give UCB's researchers the capacity to plan novel hit compounds that fulfill various predefined boundaries quickly and smooth out lead enhancement. With the Chemistry42™ platform, UCB researchers will likewise lessen the endeavors and expenses commonly connected with the plan, testing and commercialization of new drugs. Chemistry42™ v1.0 will be modified and conveyed on UCB's cloud-based supercomputing infrastructure. Chemistry42™ is an adaptable, easy to understand programming platform that incorporates man-made brainpower (AI) strategies with the fields of therapeutic and computational science for the plan of novel little atoms with client characterized druglike physicochemical properties. The platform is an adaptable conveyed web application equipped for running various assignments in equal very quickly. Container coordination and work process the executives consider unsurprising equipment freethinker asset distribution and the execution on one or the other cloud or neighborhood HPC infrastructures. "UCB is one of the leading companies in small molecule drug discovery. It was their insight and approach at the forefront of this science that encouraged us to move into AI-powered chemistry over five years ago and it gives me great pleasure to see UCB among the launch partners of our Chemistry42 operating system," said Alex Zhavoronkov, Ph.D., CEO of Insilico Medicine. "Insilico Medicine has been very responsive in this quickly developing area of science and we are delighted to be one of the launch partners for Chemistry42," Jiye Shi, Global Head of Computer-Aided Drug Design at UCB said. "Our hope is that this platform will further enhance the digital transformation of our drug discovery capabilities for the benefit of patients worldwide." About Insilico Medicine Insilico Medicine develops software that leverages generative models, reinforcement learning (RL), and other modern machine learning techniques to generate new molecular structures with specific properties. Insilico Medicine also develops software for the generation of synthetic biological data, target identification, and the prediction of clinical trial outcomes. The company integrates two business models: providing AI-powered drug discovery services and software through its Pharma.AI platform (www.insilico.com/platform/) and developing its pipeline of preclinical programs. The preclinical program is the result of pursuing novel drug targets and novel molecules discovered through its platforms. Since its inception in 2014, Insilico Medicine has raised over $52 million and received multiple industry awards. About UCB UCB, Brussels, Belgium is a global biopharmaceutical company focused on the discovery and development of innovative medicines and solutions to transform the lives of people living with severe diseases of the immune system or of the central nervous system.

Read More