Biomica Announces the Advancement to Large-scale Production of BMC128, Its Live Bacterial Product Candidate Consortium

Biomica | October 13, 2020

Biomica, an emerging biopharmaceutical company developing innovative microbiome-based therapeutics, and a subsidiary of Evogene Ltd. (NASDAQ: EVGN) (TASE: EVGN), announced today the advancement to large-scale production of BMC128, its Live Bacterial Product (LBP) candidate consortium. The microbes, which will be produced in large-scale are expected to support Biomica's first-in-man proof-of-concept clinical trials for its immuno-oncology program, anticipated to begin in 2021. BMC128 is advancing to the GMP production stage following the successful completion of the initial R&D stage of drug product development and manufacturing, conducted by Biose Industrie (Aurillac, France). Biomica's immuno-oncology program is focused on its leading 4-strain candidate consortium BMC128. Biomica recently announced positive results in the program, demonstrating the efficacy of BMC128  in potentiating the response to immune-checkpoint inhibitors (ICI) in preclinical studies. In these studies, BMC128 was administered to mice bearing cancer tumors prior to and during ICI therapy, and the results showed that treatment with BMC128 significantly improved anti-tumor activity. Biose Industrie is a drug-GMP certified manufacturer of bacteria-based APIs and clinical and commercial products. As previously announced earlier this year, Biomica engaged Biose for the scale-up development and GMP production of a clinical batch of its drug candidates.

Spotlight

Crops and foods today are not what they used to look like. Farmers and plant breeders have been modifying plant genes since the earliest human communities were formed and farming took hold in order to develop crops that better resist pests and foods with improved nutrition and taste. Biotechnology proponents, particularly agro-biotechnology corporations, like to claim that humans have been genetically-modifying crops for thousands of years. Biotech advocates say that modern genetic techniques, including GMOs and CRISPR gene editing, are just a continuation of this time-tested process.  That’s true, sort of.  Modern corn, bananas, eggplant, Brussels sprouts.

Spotlight

Crops and foods today are not what they used to look like. Farmers and plant breeders have been modifying plant genes since the earliest human communities were formed and farming took hold in order to develop crops that better resist pests and foods with improved nutrition and taste. Biotechnology proponents, particularly agro-biotechnology corporations, like to claim that humans have been genetically-modifying crops for thousands of years. Biotech advocates say that modern genetic techniques, including GMOs and CRISPR gene editing, are just a continuation of this time-tested process.  That’s true, sort of.  Modern corn, bananas, eggplant, Brussels sprouts.

Related News

INDUSTRIAL IMPACT

Omega Therapeutics Announces Strategic Research Collaboration with Stanford University School of Medicine

Omega Therapeutics, Inc | October 14, 2021

Omega Therapeutics, Inc. ("Omega"), a development-stage biotechnology company pioneering the first systematic approach to use mRNA therapeutics as programmable epigenetic medicines by leveraging its OMEGA Epigenomic Programing™ platform, today announced a strategic research collaboration with researchers at the Stanford University School of Medicine to explore the therapeutic potential of Omega Epigenomic Controllers (OECs) to control ocular disease genes associated with inflammation or regeneration of ocular tissues. Under the terms of the collaboration, Omega and members of the Ophthalmology Department of Stanford University School of Medicine will use the OMEGA Epigenomic Programming platform to discover and research novel ocular targets for potential future OEC development candidates. Albert Wu, M.D., Ph.D., FACS, Associate Professor of Ophthalmology, will serve as principal investigator. Other contributors will include Jeffrey Goldberg, M.D., Ph.D., Professor and Chair of Ophthalmology, and Michael Kapiloff, M.D., Ph.D., Associate Professor (Research) of Ophthalmology. "Through this research collaboration, we aim to expand the reach of our OMEGA platform within regenerative medicine, immunology, and inflammation with ocular disease targets. We will continue exploration of the broad potential of our disruptive platform and OECs, our new class of mRNA therapeutics as programmable epigenetic medicines." Mahesh Karande, President and Chief Executive Officer of Omega Therapeutics About Omega Therapeutics Omega Therapeutics is a development-stage biotechnology company pioneering the first systematic approach to use mRNA therapeutics as programmable epigenetic medicines by leveraging its OMEGA Epigenomic Programming™ platform. The OMEGA platform harnesses the power of epigenetics, the mechanism that controls gene expression and every aspect of an organism's life from cell genesis, growth and differentiation to cell death. The OMEGA platform enables control of fundamental epigenetic processes to correct the root cause of disease by returning aberrant gene expression to a normal range without altering native nucleic acid sequences. Omega's engineered, modular, and programmable mRNA-encoded epigenetic medicines, Omega Epigenomic Controllers™, target specific intervention points amongst the thousands of mapped and validated novel DNA-sequence-based epigenomic loci to durably tune single or multiple genes to treat and cure disease through Precision Genomic Control™. Omega is currently advancing a broad pipeline of development candidates spanning a range of disease areas, including oncology, regenerative medicine, multigenic diseases including immunology, and select monogenic diseases.

Read More

MEDICAL

Moderna Announces Supply Agreement with UK Government for Additional 2 Million Doses of mRNA-1273, Moderna’s Vaccine Candidate Against Covid-19

Moderna | November 30, 2020

Moderna, Inc., a biotechnology organization pioneering messenger RNA (mRNA) therapeutics and vaccines to make new generation of transformative medicines for patients, today reported a supply agreement with the UK government for an extra 2 million doses of mRNA-1273, Moderna's vaccine candidate against COVID-19, to the United Kingdom starting in March 2021. The UK government has now made sure about 7 million dosages of mRNA-1273. This confirmation comes as the UK proceeds with its efforts to secure access to safe and effective COVID-19 vaccines by establishing a broad portfolio of the most promising vaccines. On November 16, Moderna reported that the autonomous, NIH-appointed Data Safety Monitoring Board (DSMB) for the Phase 3 investigation of mRNA-1273, its vaccine candidate against COVID-19, has informed Moderna that the trial has met the statistical criteria pre-specified in the study protocol for efficacy, with a vaccine efficacy of 94.5%. This study, known as the COVE study, enrolled more than 30,000 participants in the U.S. and is being conducted in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), and the Biomedical Advanced Research and Development Authority (BARDA), part of the Office of the Assistant Secretary for Preparedness and Response at the U.S. Department of Health and Human Services.

Read More

MEDICAL

United Health Foundation Partners With Harris-Stowe State University to Create New Bioinformatics Program

Harris-Stowe State University, United Health Foundation | November 20, 2021

The United Health Foundation, the philanthropic foundation of UnitedHealth Group (NYSE: UNH), has awarded a $2 million, three-year grant to Harris-Stowe State University to create a bioinformatics program for undergraduate students at the historically Black university located in St. Louis. Bioinformatics is an emerging field that combines science, physics, math and biology to aid in the diagnosis, treatment and discovery of new therapeutic advancements. An example of bioinformatics is the use of computer analysis on the Human Genome Project, which has recorded the 3 billion basic pairs of the human DNA system. HSSU will develop a new undergraduate program to train students for careers as bioinformatics professionals. HSSU will use the support to Develop new curricula combining coursework and experiential learning opportunities. Expose high school students in surrounding school districts to the field of bioinformatics through a summer bioinformatics “boot camp” program. Offer academic scholarships for up to 25 students each year. “In the past decade, Harris-Stowe State University has emerged as a leader in training students for high-tech careers. This new program will help us to build on that important work, as well as continue to fulfill our mission of serving historically underrepresented students. Bioinformatics is a rapidly growing field of study, and it is vital for all people to play a role in its advancement.” Dr. LaTonia Collins Smith, interim president of HSSU Studies have shown that there is a substantial gap in the number of diverse college students trained in biomedical sciences. Black, Hispanic and Native American people account for only 7.1% of the employed biological/biomedical and life sciences workforce, according to the National Science Foundation. A diverse health workforce helps provide personalized, culturally competent care to an increasingly diverse population. “The United Health Foundation is honored to collaborate with Harris-Stowe State University to increase the diversity of the life sciences workforce. We are excited about HSSU training students who will make discoveries, develop therapies and advance health care for all,” said Patrick Quinn, CEO of UnitedHealthcare in Missouri, a UnitedHealth Group company. “This partnership illustrates UnitedHealth Group’s commitment to health equity and to building a diverse health workforce reflective of our society.” The commitment in Missouri is one of many ways UnitedHealth Group is working to advance health equity by diversifying the health workforce of the future. The United Health Foundation’s Diverse Scholars Initiative, for example, partners with nine nonprofit and civic organizations and has provided over 3,000 scholarships to diverse students studying medicine and public health across the U.S. since 2007. Optum Technology, part of Optum which is a UnitedHealth Group company, offers a mentor-led STEM program that has provided science, technology, engineering and mathematics training to over 7,000 diverse and underrepresented students at 103 middle and high schools since 2019. To learn more about the company’s commitment to health equity as well as its efforts to build healthier communities, improve outcomes and create a modern, high-performing health care system. About Harris-Stowe State University For over 160 years, Harris-Stowe State University (HSSU) has served the historically underrepresented. As a Historically Black College and University, HSSU is strongly committed to providing a high-quality higher education experience that is both affordable and accessible to the diverse populations within and beyond the metropolitan St. Louis region. More than 90% of student population are racially and ethnically diverse and receive some form of financial aid. About the United Health Foundation Through collaboration with community partners, grants and outreach efforts, the United Health Foundation works to improve our health system, build a diverse and dynamic health workforce and enhance the well-being of local communities. The United Health Foundation was established by UnitedHealth Group (NYSE: UNH) in 1999 as a not-for-profit, private foundation dedicated to improving health and health care. To date, the United Health Foundation has committed more than $500 million to programs and communities around the world.

Read More