AVM Biotechnology hires executive team for Oncology & COVID-19 clinical trials

Seattle's AVM Biotechnology, an up-and-coming biotech firm whose lead molecule, AVM0703, has received FDA permission to begin clinical trials treating no-option Non-Hodgkin's Lymphoma and is applying to begin trials treating moderate-severely ill COVID-19 patients, announced today the hiring of Janet R. Rea, MSPH, as Chief Operating Officer. As COO, Rea will lead operations and direct regulatory affairs as the company conducts clinical trials and brings AVM0703 to market. "I am delighted that Janet Rea will join our team at AVM Biotechnology as the Chief Operating Officer. Having worked with Janet during a pivotal time at Protein Sciences while pursuing Flublok® FDA approval," said Dr. Manon Cox, AVM Biotechnology's Executive Board Member, "I know that her passion for quality and her tremendous experience in the transition from development into commercialization is exactly what we need at this crucial time at AVM now that our lead product is moving into the clinic." Janet R. Rea, MSPH, RAC, brings over 35 years of industry leadership experience in clinical development through commercialization in biologics and small molecules, with focus on oncology, infectious diseases, orphan and rare diseases. She obtained her B.S. in microbiology and M.S. in Public Health from the University of Washington. Her career in the healthcare industry began with then-American Hospital Supply Corporation (now Baxter), followed by Genetic Systems. Ms. Rea was an early employee of Seattle-based Immunex Corporation, where she played a key role in the company's first licensed product, Leukine®. She held positions with increasing levels of responsibility with MDS Pharma and Targeted Genetics, as well as executive positions with AVI BioPharma (now Sarepta), Poniard Pharmaceuticals and Protein Sciences Corporation (acquired by Sanofi), and Therapeutic Proteins International. Most recently, she was SVP of Regulatory, Quality and Clinical Affairs at Atossa Therapeutics (Genetics) with focus on breast cancer and COVID-19 therapy development. She has also operated a consulting practice to both small and large organizations and has lectured at the University of Washington for the Biomedical Regulatory Affairs Certificate and Master's Program, where she also served as a part–time Assistant Clinical Professor for two years. Ms. Rea will serve as a non-voting member of AVM's Board of Directors.

Spotlight

Spotlight

Related News

Medical

Twist Bioscience Expands Express Genes Rapid Synthesis Service

Twist Bioscience Corporation | January 30, 2024

Twist Bioscience Corporation a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, today announced the expansion of Twist Express Genes, a new leading gene synthesis service with an order to shipping turnaround starting at five business days1, to include larger DNA preparations up to 1 milligram. The Express Genes offering, initially launched in November 2023, now extends to larger midiprep (10μg to 100 μg) and maxiprep (100μg to 1mg) DNA preparations. As with Twist standard speed Clonal Genes, all Twist Express Genes are NGS-verified as clonally perfect. “Since the initial launch of our Express Genes service in November, we have received positive and enthusiastic feedback from existing customers on our consistent and rapid turnaround time. By expanding Express Genes to include midiprep and maxiprep, we can now offer rapid gene synthesis at all gene prep scales, enabling large scale experimentation for pharmaceutical, biotechnology, academic and industrial chemical researchers,” said Emily M. Leproust, Ph.D., CEO and co-founder of Twist Bioscience. “With the expanded offering of Twist Express Genes, more researchers can gain access to Twist genes fast and at scale, including those using alternative providers and those cloning their own genes. The ability to order and receive synthetic DNA fast and at scale means more time for cutting-edge research, more make-test-learn cycles, and an accelerated journey to game-changing discoveries.” Twist leverages its ability to miniaturize the chemical reaction to create DNA using its silicon-based DNA synthesis platform along with expertise, software, optimized processes and the expanded layout of its Wilsonville facility to deliver Clonal Genes and Gene Fragments at scale and with rapid turnaround times. Twist’s Express Genes are offered with dynamic pricing, which reflects market demand and manufacturing capacity in a responsive premium price. Customers are able to quickly and easily place orders for Express Genes through Twist’s ecommerce platform. Twist Express Genes Twist Express Genes are 0.3kb to 5.0kb in length. Due to scale enabled by Twist’s platform, orders of any size both small and large can be filled, and as with standard speed Twist Clonal Genes, Twist Express Genes are NGS sequence-verified as one hundred percent accurate. Twist Express Genes can be cloned into catalog vectors or custom vectors so that customers can move right to experimentation. They can also be shipped in customers’ preferred delivery formats, including tubes and plates. For more information and product specifications click here. Current turnaround times for some Twist Bioscience products Express Genes1 (50ng-10µg): starting at 5 business days, now for up to 10µg Standard Clonal Genes (50ng-10µg): starting at 10 business days Express Genes1 (10µg-1mg): starting at 8 business days Standard Clonal Genes (10µg-1mg): starting at 13 business days 1 Express Clonal Genes ship in 5-7 business days. DNA prep sizes including 10 μg - 100 μg, and 100 μg - 1 mg may incur an additional 3-5 days for synthesis. Orders placed outside of the US will incur additional delivery turnaround time. Express Genes orders that require new custom vector onboarding will incur an additional 1-2 weeks for processing. About Twist Bioscience Corporation Twist Bioscience is a leading and rapidly growing synthetic biology and genomics company that has developed a disruptive DNA synthesis platform to industrialize the engineering of biology. The core of the platform is a proprietary technology that pioneers a new method of manufacturing synthetic DNA by “writing” DNA on a silicon chip. Twist is leveraging its unique technology to manufacture a broad range of synthetic DNA-based products, including synthetic genes, tools for next-generation sequencing (NGS) preparation, and antibody libraries for drug discovery and development. Twist is also pursuing longer-term opportunities in digital data storage in DNA and biologics drug discovery. Twist makes products for use across many industries including healthcare, industrial chemicals, agriculture and academic research.

Read More

Medical

Capricor Therapeutics Announces Collaboration with the National Institutes of Health for Clinical Trial of Novel Exosome-Based Multivalent Vaccine

Capricor Therapeutics | January 24, 2024

Capricor Therapeutics a biotechnology company developing transformative cell and exosome-based therapeutics for the treatment and prevention of rare diseases, today announced that Capricor’s proprietary StealthX™ exosome-based multivalent vaccine (StealthX™ vaccine) for the prevention of SARS-CoV-2 has been selected to be part of Project NextGen, an initiative by the U.S. Department of Health and Human Services to advance a pipeline of new, innovative vaccines providing broader and more durable protection for COVID-19. As part of Project NextGen, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, will conduct a Phase 1 clinical study with Capricor’s StealthX™ vaccine, subject to regulatory approval. NIAID's Division of Microbiology and Infectious Diseases (DMID) would oversee the study. “We are extremely pleased with the external support from the NIH, which highlights the clinical potential of our StealthX™ exosome platform technology and provides non-dilutive support for the advancement of our vaccine candidate,” said Linda Marbán, Ph.D., Capricor’s chief executive officer. “Our proprietary vaccine is multivalent, delivering both the highly mutagenic S protein (Spike) and the more stable N protein (Nucleocapsid) which potentially may offer broader and longer lasting immunity against SARS-CoV-2. We view the NIH SARS-CoV-2 project as the first clinical step towards development of a next generation vaccine platform that may be extended to other infectious diseases. Our platform is designed to combine the speed of response of an mRNA vaccine with the potential efficacy of a protein vaccine. Further, our StealthX™ vaccine is free of both adjuvant and lipid nanoparticles and in preclinical studies has generated a strong immune response at low doses. We believe our StealthX™ vaccine may offer a clinically meaningful alternative for highly mutating or novel infectious agents.” Dr. Marbán continued, “This is the opportunity we have been waiting for as it allows the exosome technology to be brought into the clinic as we continue to focus our resources on CAP-1002 for the treatment of Duchenne muscular dystrophy. Beyond SARS-CoV-2, we look forward to exploring the potential therapeutic utility of this platform, and more broadly, expanding our pipeline into therapeutics and future partnership opportunities.” About Capricor’s StealthX™ Vaccine The StealthX™ vaccine is a proprietary vaccine developed internally by Capricor utilizing exosomes that were engineered to express either spike or nucleocapsid proteins on the surface. Preclinical results from murine and rabbit models published in Microbiology Spectrum, showed the StealthX™ vaccine, resulted in robust antibody production, potent neutralizing antibodies, a strong T-cell response and a favorable safety profile. These effects were obtained with administration of only nanogram amounts of protein and without adjuvant or synthetic lipid nanoparticles (LNPs). Exosomes offer a new antigen delivery system that potentially could be utilized to rapidly generate multivalent protein-based vaccines. Exosomes, first identified as extracellular vesicles, are small vesicles enriched in specific subsets of proteins, RNAs and lipids and responsible for cell-to-cell communication. About Capricor Therapeutics Capricor Therapeutics, Inc. is a biotechnology company focused on the development of transformative cell and exosome-based therapeutics for the treatment and prevention of rare diseases. Capricor’s lead candidate, CAP-1002, is an allogeneic cardiac-derived cell therapy currently in Phase 3 clinical development for treating Duchenne muscular dystrophy (DMD). Further, Capricor has entered into a partnership for the exclusive commercialization and distribution of CAP-1002 for DMD in the United States and Japan with Nippon Shinyaku Co., Ltd. (U.S. subsidiary: NS Pharma, Inc.), subject to regulatory approval. Capricor is also developing its exosome technology as a potential next-generation therapeutic platform. Our proprietary StealthX™ exosome platform has potential for a broad range of new therapeutic applications in the field of vaccinology as well as targeted oligonucleotide, protein and small molecule therapeutics to treat or prevent a variety of diseases.

Read More

Industry Outlook

Virica Expands Bioprocessing Capabilities with Carleton University Partnership

Virica Biotech | January 17, 2024

Virica Biotech Inc. (“Virica”), a leading developer of cell enhancers for scaling of viral vector as well as cell and gene therapy manufacturing will expand its bioprocessing services through a partnership with Carleton University. Slated to open this spring, Virica’s new facility at the university multiplies the Company’s capacity to provide high throughput virology services for customers looking to optimize production of their cell and gene therapies. “Carleton’s new Health Sciences Building provides us with greater access to modern infrastructure and analytical expertise,” said Jean Simon Diallo, Ph.D., CEO of Virica Biotech. “Their state-of-the-art analytical research facilities and world-class researchers across multiple disciplines open the door to exciting opportunities for partnering with Carleton University as we continue to invest to meet customer demand.” “We are very pleased to welcome Virica Biotech to the Carleton campus,” said Rafik Goubran, Ph.D., Vice-President (Research and International) and Chancellor’s Professor, Carleton University. “This multi-year, multi-million-dollar research and infrastructure partnership will help drive innovation and talent development in the Ottawa region for the creation and manufacturing of advanced therapies.” This partnership expands on Carleton’s history of supporting Ottawa biotechnology companies. The new open concept facility will include high throughput equipment to accelerate Virica’s bioprocess development and optimizations. In addition to expanded modern infrastructure, this new location enables the development and recruitment of world-class talent with experiential learning and training opportunities for Carleton students. Through this partnership, Carleton will coordinate the establishment of a scholarship fund designed to empower graduate students from traditionally underrepresented groups in science. About Virica Biotech Virica develops cell enhancers for viral vectors that improve the yield and quality of vaccines and cell and gene therapies, allowing developers to economically deploy their products at scale. Virica’s Viral Sensitizer (VSE™) platform reduces production inefficiencies caused by anti-viral defenses in manufacturing cells. Purpose formulated VSE combinations substantially increase manufacturing yields and reduce the cost of goods for a range of life-changing products, including vaccines, gene therapies, and cell therapies. About Carleton University Carleton University is a dynamic, research-intensive institution that engages in partnerships to address the world’s most pressing challenges. The university’s corporate collaborations bring together world-class companies, researchers and a new generation of talent with over 30,000 students to deliver innovations and results that are driving a more prosperous, sustainable future.

Read More