Medical
PR Newswire | October 12, 2023
Ichnos Sciences, a global clinical-stage biotechnology company developing innovative multispecific antibodies for oncology, announced that the company has entered into an exclusive worldwide licensing agreement for its OX40 antagonist monoclonal antibody portfolio with Astria Therapeutics, a biopharmaceutical company developing therapies for rare allergic and immunological diseases. With the execution of this agreement, Ichnos has successfully licensed its two assets for inflammatory and immunological diseases, a key milestone in the company's prioritization of its pipeline of oncology drug candidates.
Within the terms of the agreement, Astria will assume full cost and responsibility for the global development and commercialization of the licensed therapeutic program for all indications. In exchange, Ichnos will receive up to $320 million in upfront, development, regulatory and sales milestone payments in addition to up to low double-digit royalties. Ichnos has also agreed to allow Astria to draw down on its existing investigational drug substance and drug product stocks at normalized costs to facilitate development.
Telazorlimab is a novel, humanized IgG1 monoclonal antibody that targets OX40 on T cells responsible for inflammation and immunity diseases. Excessive OX40 signaling, expressed on activated T cells, is the feature of several inflammatory diseases, including atopic dermatitis (AD). Astria plans to develop an affinity-matured version of telazorlimab and apply YTE half-life extension technology to create a product that aims to address the need for a safe, effective, and infrequently administered AD treatment.
"As Ichnos continues to grow as a biotechnology company, this agreement enables our team to focus on advancing our robust pipeline of clinical-stage multispecific antibodies in oncology generated by our proprietary BEAT® platform1, as well as continue the discovery and development of our NK-cell engaging programs for solid tumors," said Cyril Konto, M.D., President and CEO of Ichnos. "I am proud of the work achieved by the Ichnos team in successfully completing the Phase 2b with telazorlimab in atopic dermatitis and potentially opening up a new therapeutic class for this disease. Ichnos is confident in Astria Therapeutics' capabilities and vision for pursuing the development of its OX40 program and delivering a potentially life-changing treatment to patients with inflammatory and immune diseases."
"We are looking forward to building on the foundational work that Ichnos has done with their OX40 portfolio," said Jill Milne, Ph.D., co-founder and CEO of Astria Therapeutics. "We believe that by using Ichnos' affinity-matured next generation monoclonal antibody OX40 antagonist and applying YTE half-life extension technology, we have the potential to deliver a best-in-class profile for atopic dermatitis patients; one that we think can be safe, effective, and long-acting. In addition to OX40 antagonism already being a clinically validated mechanism in atopic dermatitis, we also are excited about the opportunity for potential expansion into additional indications."
About Ichnos Sciences Inc.
A fully integrated, global biotech with the spirit of a start-up, Ichnos is shifting the way the world thinks about innovation in medicine through its research and development of transformative, disease-centric treatments in oncology. The company, with headquarters in New York, N.Y., is rapidly advancing a clinical-stage pipeline of novel, first-in-class candidates designed to address complex diseases and to treat patients holistically. With its patented BEAT® technology platform and pioneering teams, Ichnos Sciences has a mission to provide breakthrough, curative therapies that will extend and improve lives, writing a new chapter in healthcare.
Read More
Medical
PR Newswire | October 10, 2023
Immunic, Inc. a biotechnology company developing a clinical pipeline of orally administered, small molecule therapies for chronic inflammatory and autoimmune diseases, today announced positive interim data from its phase 2 CALLIPER trial of nuclear receptor related 1 (Nurr1) activator, vidofludimus calcium (IMU-838), in patients with progressive multiple sclerosis (PMS). The Company believes that this data shows biomarker evidence that vidofludimus calcium's activity extends beyond the previously observed anti-inflammatory effects, thereby further reinforcing its neuroprotective potential.
Serum NfL responses were consistently observed for vidofludimus calcium across progressive MS disease and all subpopulations. In the overall PMS population at 24 weeks (N=203), vidofludimus calcium was associated with a 6.7% reduction from baseline in serum NfL, compared to a 15.8% increase over baseline in placebo (p=0.01, post hoc). At 48 weeks (N=79), vidofludimus calcium reduced serum NfL by 10.4% from baseline, compared to a 6.4% increase in placebo. Substantial reductions were also seen across all PMS subtypes, as well as in patients that show or do not show disease and/or magnetic resonance imaging (MRI) activity.
Although early, interim GFAP data also showed a promising signal: at 24 weeks (N=203), GFAP increased by 3.7% for vidofludimus calcium, and 4.4% for placebo. At 48 weeks (N=79), the change was only 2.7% for vidofludimus calcium, with a 6.4% increase for placebo. Progression of GFAP response is generally thought to evolve more slowly than NfL, and the Company believes that a longer follow-up may further strengthen this signal.
"Serum NfL has been consistently shown to capture disease activity and to predict future disability in MS. Vidofludimus calcium shows a separation in serum NfL over placebo in this interim analysis, an effect also seen across different subgroups," stated Prof. Jens Kuhle, M.D., Ph.D., Senior Physician, Head of Neuroimmunology Unit and Multiple Sclerosis Centre, University Hospital Basel, Switzerland. "Particularly remarkable, the non-active progressive MS population, which represents the highest unmet medical need in MS, also showed differences in NfL levels over this relatively short observation period in favor of vidofludimus calcium. Meanwhile, although longer follow-up is needed, the GFAP data set also shows a potential promising early signal. Overall, the interim biomarker data further support vidofludimus calcium's possible activity beyond an anti-inflammatory effect, which may be related to its potent Nurr1 activation."
"The clear separation observed in serum NfL for vidofludimus calcium over placebo in the PMS patient population represents another major step forward for, what potentially could be, a first-in-class Nurr1 activator for MS," commented Daniel Vitt, Ph.D., Chief Executive Officer and President of Immunic. "Although no head-to-head data is available, it is encouraging to see that vidofludimus calcium's improvement in NfL over placebo appears at least as good as, and is in fact numerically higher than that observed with historical studies of other therapeutic approaches for PMS. We believe that, if the top-line CALLIPER data, expected in April of 2025, continue to show a neuroprotective effect, we may be able to position vidofludimus calcium as the first oral treatment option for non-active SPMS. Additionally, the drug's first-in-class ability to activate Nurr1, a known neuroprotective target, should also significantly benefit our ongoing phase 3 ENSURE program in relapsing MS where prevention of disability progression independent of relapse activity (PIRA), serves as a key outcome."
"We are very pleased to see such strong improvements in serum NfL for vidofludimus calcium over placebo in the overall PMS population of this interim analysis, as well as across all PMS subtypes and in patients with and without disease activity, and with and without MRI activity. We even saw evidence in non-active SPMS, a population where the medical need for new therapies is high as there is currently no relevant treatment available in the US," added Andreas Muehler, M.D., Chief Medical Officer of Immunic. "Finally, we were also excited to see an encouraging early signal with GFAP. This is a newer biomarker which is thought to evolve more slowly and with lower amplitude than NfL, and longer follow-up will hopefully allow us to see even stronger results."
The Company believes that these results corroborate separate findings from its phase 2 EMPhASIS trial in relapsing-remitting multiple sclerosis (RRMS), where vidofludimus calcium was associated with a decrease in serum NfL at 24 weeks (-17.0% for 30 mg and -20.5% for 45 mg) as compared to baseline values, as contrasted with a 6.5% increase in serum NfL over baseline among placebo patients.
CALLIPER is a multicenter, randomized, double-blind, placebo-controlled phase 2 trial which enrolled 467 patients with primary PMS or active or non-active secondary PMS at more than 70 sites throughout North America as well as Western, Central and Eastern Europe. Patients were randomized to either 45 mg daily doses of vidofludimus calcium or placebo, and the trial's primary endpoint is the annualized rate of percent brain volume change up to 120 weeks. Key secondary endpoints include the annualized rate of change in whole brain atrophy and time to 24-week confirmed disability progression based on the expanded disability status scale (EDSS).
Anticipated MS Clinical Milestones
Top-line data from the phase 2 CALLIPER trial of vidofludimus calcium in PMS is expected in April of 2025.
Data from the interim analysis of the phase 3 ENSURE program of vidofludimus calcium in relapsing MS is expected in late 2024, with the top-line readout of the first of the ENSURE trials at the end of 2025.
The interim data of the phase 2 CALLIPER trial of vidofludimus calcium in PMS will be filed on a Form 8-K and discussed during the management presentation to be held tomorrow at 8:00 am ET. The presentation will also be accessible on the "Events and Presentations" section of Immunic's website at: https://ir.imux.com/events-and-presentations.
About Progressive Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease that affects the brain, spinal cord and optic nerve. In MS, myelin, the coating that protects the nerves, is attacked and damaged by the immune system. Thus, MS is considered an immune-mediated demyelinating disease of the central nervous system. Progressive multiple sclerosis (PMS) includes both primary progressive MS (PPMS) and secondary progressive MS (SPMS). PPMS is characterized by steadily worsening neurologic function from the onset of symptoms without initial relapse or remissions. SPMS is identified following an initial relapsing-remitting course, after which the disease becomes more steadily progressive, with (active SPMS) or without (non-active SPMS) other disease activity present.
About Vidofludimus Calcium (IMU-838)
Vidofludimus calcium is a small molecule investigational drug in development as an oral next-generation treatment option for patients with multiple sclerosis and other chronic inflammatory and autoimmune diseases. The selective immune modulator activates the neuroprotective transcription factor nuclear receptor related 1 (Nurr1), which is associated with direct neuroprotective properties. Additionally, vidofludimus calcium is a known inhibitor of the enzyme dihydroorotate dehydrogenase (DHODH), which is a key enzyme in the metabolism of overactive immune cells and virus-infected cells. This mechanism is associated with the anti-inflammatory and anti-viral effects of vidofludimus calcium. Vidofludimus calcium has been observed to selectively act on hyperactive T and B cells while leaving other immune cells largely unaffected and enabling normal immune system function, e.g., in fighting infections. To date, vidofludimus calcium has been tested in more than 1,400 individuals and has shown an attractive pharmacokinetic, safety and tolerability profile. Vidofludimus calcium is not yet licensed or approved in any country.
About Immunic, Inc.
Immunic, Inc. is a biotechnology company developing a clinical pipeline of orally administered, small molecule therapies for chronic inflammatory and autoimmune diseases. The company's lead development program, vidofludimus calcium (IMU-838), is currently in phase 3 and phase 2 clinical trials for the treatment of relapsing and progressive multiple sclerosis, respectively, and has shown therapeutic activity in phase 2 clinical trials in patients suffering from relapsing-remitting multiple sclerosis and moderate-to-severe ulcerative colitis. Vidofludimus calcium combines neuroprotective effects, through its mechanism as a first-in-class nuclear receptor related 1 (Nurr1) activator, with additional anti-inflammatory and anti-viral effects, by selectively inhibiting the enzyme dihydroorotate dehydrogenase (DHODH). IMU-856, which targets the protein Sirtuin 6 (SIRT6), is intended to restore intestinal barrier function and regenerate bowel epithelium, which could potentially be applicable in numerous gastrointestinal diseases, such as celiac disease, where it is currently in preparations for a phase 2 clinical trial. IMU-381, which currently is in preclinical testing, is a next generation molecule being developed to specifically address the needs of gastrointestinal diseases.
Read More
Medical
PR Newswire | October 25, 2023
Flagship Pioneeringannounced the combination of Laronde and Senda Biosciences to launch Sail Biomedicines, a company pioneering the design and deployment of fully programmable medicines to transform patient care. Sail harnesses the power of first-in-category programmable payloads of Endless RNA™ (eRNA), first-in-category programmable nanoparticles, and emerging, proprietary AI technologies, to unlock the comprehensive programming of medicines for the first time. Guillaume Pfefer, Ph.D., MBA, who is also CEO-Partner at Flagship Pioneering, will become Sail's CEO and board member, while John Mendlein, Ph.D., who also serves as Executive Partner, Flagship Pioneering, will become the company's Executive Chairman.
Sail unites Laronde and Senda Biosciences, two companies that deliver more than eight years of combined data and multi-product platform building. Senda's platform was the first to leverage a universal chemical code of natural nanoparticles that enables directed and repeatable deployment of payloads, such as translatable RNA, directly to cells and tissues of choice. Laronde pioneered eRNA, a new class of synthetic, translatable RNA that can be programmed to express diverse proteins inside the body, with vast therapeutic potential.
"Endless RNA has the potential to create an entirely new class of programmable medicines across therapeutic areas that we will now be able to deliver directly to cells and tissues via deployment molecules with unique properties to confer specificity and greater tolerability," said Mendlein. "We believe these programmable medicines will be greatly enhanced via our proprietary generative AI technologies and rapid prototyping abilities to achieve breakthroughs currently beyond the grasp of the human mind. I look forward to working with the Sail Biomedicines team in this exciting new chapter."
"Our deployment platform utilizes natural nanoparticles to shuttle biomolecules into human cells, with unique tropism, potency, and redosability," said Pfefer. "I look forward to leading the integration of these two teams to accelerate the development of new product candidates, build strategic partnerships, and enable diverse value pools, with the goal of swiftly delivering life-changing vaccines and therapies for the people who need them."
"Sail Biomedicines builds on the progress made by two leading Flagship bioplatform companies and will enable integrative design for more effective programmable medicines," said Noubar Afeyan, Ph.D., Founder and CEO of Flagship Pioneering. "I am confident the combined leadership team and board will carry forward this company to realize its bold ambitions and ultimately deliver maximum impact for patients."
In addition to Mendlein and Pfeffer, the Sail Biomedicines Board of Directors will comprise all current members of the Laronde and Senda Biosciences boards, as follows
Pablo Cagnoni, M.D., President and Head of Research & Development, Incyte
Jose "Pepe" Carmona, MBA, Chief Financial Officer, ADC Therapeutics
Paula Hammond, Ph.D., Institute Professor, Massachusetts Institute of Technology, Head of Department of Chemical Engineering, Massachusetts Institute of Technology
Avak Kahvejian, Ph.D., General Partner, Flagship Pioneering
Ignacio Martinez, MBA, General Partner, Flagship Pioneering
Sheri McCoy, M.S., MBA, Former Vice Chairman, Johnson & Johnson
Mary Szela, MBA, CEO and President, TriSalus Life Sciences
About Sail Biomedicines
Sail Biomedicines is pioneering the integrative design and deployment of fully programmable medicines to transform patient care. Sail's platform combines first-in-class programmable circular RNA technology (Endless RNA™ or eRNA), and an industry-leading platform of programmable nanoparticles, utilizing natural components, to unlock comprehensive programming of medicines for the first time. By leveraging cutting-edge eRNA and nanoparticle deployment technology, Sail is building a wealth of data, enabling unparalleled use of generative AI techniques to identify and design fully programmable medicines that are potent, targeted, versatile, and tunable. Sail was founded by Flagship Pioneering.
About Flagship Pioneering
Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. To date, Flagship has deployed over $3.4 billion in capital toward the founding and growth of its pioneering companies alongside more than $26 billion of follow-on investments from other institutions.
Read More