Executive Order on Agricultural Biotechnology Is an Important Step Forward

During his June 11th visit to Iowa, President Donald Trump pledged to boost the ethanol industry and protect farmers. Specifically, the president lifted a summertime ban on E15 gasoline blends and then signed an executive order to streamline the process for approving products of agricultural biotechnology.

Spotlight

Massachusetts eHealth Collaborative

The Massachusetts eHealth Collaborative (MAeHC) is a pioneer and national leader in health information technology. We assist for-profit and non-profit private organizations, government agencies, and multi-stakeholder collaborative to plan, deploy, operate, and optimize health information systems. Our services range from electronic health records (EHR) implementations to health information exchange (HIE) to quality data extraction, warehousing, analytics, and reporting.

OTHER ARTICLES
MedTech

Nanostructures: Emerging as Effective Carriers for Drug Delivery

Article | September 22, 2022

Natural remedies have been employed in medicine since antiquity. However, a large number of them fail to go past the clinical trial stages. In vivo instability, poor solubility and bioavailability, a lack of target-specific delivery, poor absorption, and side effects of the medication are only a few of the problems caused by the use of large-sized materials in drug administration. Therefore, adopting novel drug delivery systems with targeted medications may be a solution to address these pressing problems. Nanotechnology has received tremendous attention in recent years and has been demonstrated to help blur the boundaries between the biological and physical sciences. With great success, it plays a vital part in enhanced medication formulations, targeted venues, and controlled drug release and delivery. Limitations of Traditional Delivery Trigger the Adoption of Nanoparticles The field of nanotechnology and the creation of drug formulations based on nanoparticles is one that is expanding and showcasing great potential. It has been thoroughly researched in an effort to develop new methods of diagnosis and treatment and to overcome the limitations of several diseases' current therapies. As a result, nanoparticles are being used to improve the therapeutic effectiveness and boost patient adherence to treatment by increasing medication bioavailability, drug accumulation at a particular spot, and reducing drug adverse effects. The nanoparticles could be transformed into intelligent systems housing therapeutic and imaging agents by manipulating their surface properties, size, correct drug load, and release with targeted drug delivery. Nanostructures facilitate the release of combination medications at the prescribed dose since they remain in the blood circulation system for a long time. Therefore, they result in fewer plasma fluctuations with decreased side effects. Due to their nanoscale, these structures can easily enter the tissue system, promote the absorption of drugs by cells, make medication administration more effective, and ensure that the medicine acts at the targeted location. The Way Ahead Nanomedicine and nano-delivery systems are a comparatively new but fast-evolving science in which nanoscale materials are used as diagnostic tools to deliver drug molecules at precisely targeted sites in a controlled manner. It is finding applications for the treatment of diseases such as cardiovascular, neurodegenerative, cancer, ocular, AIDS, and diabetes, among others. With more research and technological advancement, these drug delivery solutions will open up huge opportunities for companies that work with them.

Read More
MedTech

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | July 12, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More
Medical

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | August 16, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More
Diagnostics

Making Predictions by Digitizing Bioprocessing

Article | April 20, 2021

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

Massachusetts eHealth Collaborative

The Massachusetts eHealth Collaborative (MAeHC) is a pioneer and national leader in health information technology. We assist for-profit and non-profit private organizations, government agencies, and multi-stakeholder collaborative to plan, deploy, operate, and optimize health information systems. Our services range from electronic health records (EHR) implementations to health information exchange (HIE) to quality data extraction, warehousing, analytics, and reporting.

Related News

Agricultural Biotechnology Market Size, Share, Analysis, Report and forecast to 2022

biotech | March 06, 2017

According to Stratistics MRC, the Global Agricultural Biotechnology market is accounted for $20.08 billion in 2015 and is expected to reach $39.5 billion by 2022 growing at a CAGR of 10.1% from 2015 to 2022. Factors stimulating the market growth are increasing demand for food, growing area of biotech crops, rising demand for biofuels & bio plastic production and demand for animal feed. Furthermore, increased investments and capital inflow for industry participants and research & development within Africa and Asia Pacific region will provide more growth prospects towards the market.

Read More

Agricultural biotechnology crucial for feeding world population

biotech | January 31, 2017

Sarnia - It took until 1800 for the world population to reach one billion people. The second billion was reached in only 130 years (1930), the third billion in less than 30 years (1959), the fourth billion in 15 years (1974) and the fifth billion in only 13 years (1987). During the 20th century alone, the global population grew from 1.6 billion to over six billion people.

Read More

Agricultural Biotechnology Market Size, Share, Analysis, Report and forecast to 2022

biotech | March 06, 2017

According to Stratistics MRC, the Global Agricultural Biotechnology market is accounted for $20.08 billion in 2015 and is expected to reach $39.5 billion by 2022 growing at a CAGR of 10.1% from 2015 to 2022. Factors stimulating the market growth are increasing demand for food, growing area of biotech crops, rising demand for biofuels & bio plastic production and demand for animal feed. Furthermore, increased investments and capital inflow for industry participants and research & development within Africa and Asia Pacific region will provide more growth prospects towards the market.

Read More

Agricultural biotechnology crucial for feeding world population

biotech | January 31, 2017

Sarnia - It took until 1800 for the world population to reach one billion people. The second billion was reached in only 130 years (1930), the third billion in less than 30 years (1959), the fourth billion in 15 years (1974) and the fifth billion in only 13 years (1987). During the 20th century alone, the global population grew from 1.6 billion to over six billion people.

Read More

Events