Clinical Operations Comes of Age

| August 1, 2017

article image
The delivery of the clinical study programme is the most costly, labour-intensive and time-consuming component of the drug development process. Delivering the clinical study programme successfully is getting harder as the operating environment has become more complex. There is increased competition for and continued geographical spread of clinical study sites; more complicated clinical study protocols; increased regulatory agency expectations; stringent post marketing commitments and continuing adoption and adaption of industry standards and best practices. Although clinical development timelines have remained stable, this stability has come at the expense of spiralling costs per patient and a decline in data quality.

Spotlight

Biorbyt Ltd.

Based in Cambridge, one of Europe’s largest bioscience hubs, Biorbyt has a simple yet challenging mission: to provide the best service to the global scientific community.

OTHER ARTICLES

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

5 Biotech Stocks Winning the Coronavirus Race

Article | April 13, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Defense biotech research looks to eliminate bacteria causing traveler’s diarrhea, reduce jet lag duration

Article | April 9, 2020

World traveler‘s will rejoice at the idea of a seemingly magical device that would guarantee they never suffer from the all-too-familiar stomach issues that come from traveling internationally while reducing jet lag at the same time. But it’s not just privileged globetrotters that would benefit from a device that eliminates the bacteria associated with the so-called Montezuma’s Revenge. In 2016, more than 230,000 children around the world died from some of the same types of bacteria as those that cause traveler’s diarrhea, and the bacteria mainly come from unsafe “drinking water, poor sanitation and malnutrition,” according to Oxford University’s Our World In Data portal. On Monday, DARPA announced it was researching an “implantable or ingestible bioelectronic carrier” that would eliminate the five major bacteria associated with traveler’s diarrhea.

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 12, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Spotlight

Biorbyt Ltd.

Based in Cambridge, one of Europe’s largest bioscience hubs, Biorbyt has a simple yet challenging mission: to provide the best service to the global scientific community.

Events